Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Формирование фазового сдвига периодического сигнала. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Радиолюбителю-конструктору

Комментарии к статье Комментарии к статье

Иногда при проектировании радиоэлектронных устройств возникает необходимость формирования временного и фазового сдвигов импульсных периодических сигналов. Временной сдвиг получить довольно просто (с помощью ждущего мультивибратора, дифференцирующей цепи или линии задержки). Сложнее дело обстоит с фазовым сдвигом, так как в этом случае время задержки является обратной функцией входной частоты.

Автор статьи рассказывает о возникающих здесь трудностях, путях их преодоления, дает практические примеры использования результатов своей работы.

Для формирования фазового сдвига чаще всего применяют цифровой способ, но ему свойственны такие недостатки, как сложность коммутации, применение вспомогательного генератора, ступенчатость регулировки и большое число требуемых электронных элементов [1].

Другие методы формирования фазового сдвига недостаточно освещены в радиолюбительской литературе. Нередко вместо фазовой применяют временную задержку с частотной коррекцией, а это приводит к значительной нелинейности фазочастотной характеристики или к сужению рабочей частотной полосы устройств. Между тем аналого-цифровая схемотехника позволяет простыми средствами получить приемлемые параметры фазового сдвига в широком частотном интервале.

Предлагаемый вниманию читателей фазовый узел (рис. 1,а) выполнен на D- или RS-триггере и не требует применения вспомогательных генераторов. Он снимает основные проблемы получения фазового сдвига относительно одного из перепадов импульсной последовательности в широком частотном интервале. Для плюсовых перепадов входы С или R триггера DD1 можно использовать независимо (подавая на вход С сигнал любой скважности, а на вход R - короткие импульсы через дифференцирующую цепь). Если инвертировать входной сигнал, можно реализовать сдвиг фазы для минусовых перепадов.

Формирование фазового сдвига периодического сигнала

По плюсовому перепаду на входе С или R триггер DD1 переключается в нулевое состояние и интегрирующий конденсатор С2 начинает линейно заряжаться через инверсный выход триггера от генератора тока G1. Как только напряжение на входе S достигнет порогового (для логики КМОП пороговое напряжение Uпор примерно равно Uпит/2), триггер переключается в единичное состояние и до прихода следующего плюсового перепада будет происходить разрядка конденсатора С2 через инверсный выход триггера от генератора тока G2. Глубина разрядки, а следовательно, и время последующей зарядки, определяющее длительность выходного импульса, прямо пропорциональна току I2 и обратно пропорциональна частоте.

Из подобия кривых перезарядки конденсатора С2 (график UC2 на рис. 1,б) видно, что сдвиг выходных импульсов Uвых, выраженный в угловых единицах (фаза), зависит не от входной частоты, а от отношения значений тока I1 и I2. Регулировать выходную фазу можно изменением тока одного из генераторов, обеспечивая выполнение условия I1>I2. При этом минимальный угол будет всегда больше нуля, так как конденсатор С2 не может быть заряжен мгновенно, а максимальный - несколько меньше 180 град. (вблизи этого значения узел переходит в колебательный режим). Заданный сдвиг фазы стабилен в пределах рабочего частотного интервала, а при резком изменении частоты восстанавливается после кратковременного переходного процесса.

По мере повышения частоты входного сигнала амплитуда переменной составляющей на конденсаторе С2 уменьшается и, начиная с некоторого момента, триггер перестанет переключаться по входу S, что является ограничивающим фактором. Применение интегрального таймера КР1006ВИ1, имеющего на входах внутреннего триггера чувствительные входные компараторы, расширяет частотный интервал более чем в десять раз и позволяет в большинстве случаев заменить генераторы тока резисторами, изменением сопротивления которых можно регулировать фазовый сдвиг, формируемый устройством (рис. 2).

Формирование фазового сдвига периодического сигнала

Основные параметры этого узла таковы: пределы плавного регулирования фазы -

частотный интервал - пределы изменения входной частоты, при которой заданная фаза остается неизменной, - более десяти октав или трех декад, нижняя частота - обратно пропорциональна емкости конденсатора С2 и может достигать десятых и сотых долей герца, верхняя частота - до сотен килогерц, как и для обычных релаксаторов.

Для выбора соотношения номиналов резисторов по заданному фазовому сдвигу (см. рис. 1) можно использовать формулу:

где K=Uпит/Uпор (для логики КМОП K=2), а для определения фазового сдвига по известному соотношению значения сопротивления резисторов и пороговому напряжению входа S триггера - формулу:

Нижнюю входную частоту ориентировочно оценивают из выражения:

Расчет фазового узла на таймере КР1006ВИ1 имеет некоторое отличие в связи с тем, что конденсатор С2 заряжается через последовательно соединенные резисторы R2 и R3, разряжается через резистор R2, а вход S здесь инвертирующий. График напряжения на конденсаторе в этом случае будет инверсным по сравнению с графиком UC2 на рис. 1,б. Поэтому значение порогового напряжения необходимо отсчитывать не от общего провода, а от напряжения питания. В рассматриваемом случае Uпор=2Uпит/3, т. е. K=1,5. Для этого случая формула (2) будет иметь вид:

Сопротивление резистора R2 в большинстве случаев можно принять равным 100 кОм. Если угол нужно отсчитывать в градусах, то во всех формулах число пи заменяют на 180 град. Применение описанного фазового узла (рис. 2) позволяет с минимальными затратами создавать устройства, трудно реализуемые другими способами. Так, например, на рис. 3,а показана схема удвоителя частоты сигнала произвольной скважности, обеспечивающего на выходе сигнал формы "меандр". В удвоителе сначала происходит последовательный сдвиг фазы до 270 град. узлами А1-А3, после чего промежуточные сигналы суммирует по модулю 2 элемент D1 ИСКЛЮЧАЮЩЕЕ ИЛИ. Применение здесь элемента ИСКЛЮЧАЮЩЕЕ ИЛИ не обязательно. Вполне достаточно более распространенного элемента И-НЕ. Диаграммы сигналов при этом остаются прежними. Графики на рис. 3,б иллюстрируют работу устройства. Подобное устройство, построенное на ждущих мультивибраторах [2], обеспечивает аналогичный результат только для одной частоты, при изменении которой требуется корректировка номиналов элементов.

Формирование фазового сдвига периодического сигнала

Для формирования трехфазного напряжения обычно используют узел, состоящий из генератора прямоугольных импульсов на утроенную частоту и делителя частоты на 3, обеспечивающего на выходах соответствующий фазовый сдвиг. В отдельных же случаях бывает удобнее получать трехфазное напряжение умножением частоты с помощью двух фазосдвигающих узлов А1, А2 (рис. 4), дающих задержку на 120 град.

Формирование фазового сдвига периодического сигнала

Третий такт формирует логический элемент D1. Распределитель может быть применен для питания трехфазных двигателей с регулируемой частотой вращения ротора или для управления трехканальным мультиплексором при коммутации сигналов. Форма выходных импульсов представлена на рис. 4,б.

Еще один пример - регулятор угла опережения зажигания для двигателя автомобиля, оснащенного контактной транзисторной системой зажигания. Подобный регулятор позволяет корректировать работу системы искрообразования двигателя при изменении его режима работы непосредственно из кабины [3]. Предлагаемое устройство (рис. 5,а) состоит из прямого канала передачи импульсов с контактов S1 прерывателя к системе зажигания и задерживающего импульсы на заданный угол с помощью фазового узла. После сложения импульсных последовательностей на логическом элементе D1 И получим выходной сигнал, характеризуемый регулируемым моментом формирования искры и почти постоянной длительностью накопления энергии в первичной обмотке катушки зажигания.

Формирование фазового сдвига периодического сигнала

Литература

  1. Бирюков А. Цифровой октан-корректор. - Радио, 1987, № 10, с. 34 - 37.
  2. Шифрин А. Удвоение частоты импульсного сигнала. - Радио, 1992, № 12, с. 32.
  3. Беспалов В. Корректор угла ОЗ. - Радио, 1988, № 5, с. 17, 18.

Автор: С.Вычукжанин, г.Санкт-Петербург

Смотрите другие статьи раздела Радиолюбителю-конструктору.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Искусственная кожа для эмуляции прикосновений 15.04.2024

В мире современных технологий, где удаленность становится все более обыденной, сохранение связи и чувства близости играют важную роль. Недавние разработки немецких ученых из Саарского университета в области искусственной кожи представляют новую эру в виртуальных взаимодействиях. Немецкие исследователи из Саарского университета разработали ультратонкие пленки, которые могут передавать ощущение прикосновения на расстоянии. Эта передовая технология предоставляет новые возможности для виртуального общения, особенно для тех, кто оказался вдали от своих близких. Ультратонкие пленки, разработанные исследователями, толщиной всего 50 микрометров, могут быть интегрированы в текстильные изделия и носиться как вторая кожа. Эти пленки действуют как датчики, распознающие тактильные сигналы от мамы или папы, и как исполнительные механизмы, передающие эти движения ребенку. Прикосновения родителей к ткани активируют датчики, которые реагируют на давление и деформируют ультратонкую пленку. Эта ...>>

Кошачий унитаз Petgugu Global 15.04.2024

Забота о домашних животных часто может быть вызовом, особенно когда речь заходит о поддержании чистоты в доме. Представлено новое интересное решение стартапа Petgugu Global, которое облегчит жизнь владельцам кошек и поможет им держать свой дом в идеальной чистоте и порядке. Стартап Petgugu Global представил уникальный кошачий унитаз, способный автоматически смывать фекалии, обеспечивая чистоту и свежесть в вашем доме. Это инновационное устройство оснащено различными умными датчиками, которые следят за активностью вашего питомца в туалете и активируются для автоматической очистки после его использования. Устройство подключается к канализационной системе и обеспечивает эффективное удаление отходов без необходимости вмешательства со стороны владельца. Кроме того, унитаз имеет большой объем смываемого хранилища, что делает его идеальным для домашних, где живут несколько кошек. Кошачий унитаз Petgugu разработан для использования с водорастворимыми наполнителями и предлагает ряд доп ...>>

Привлекательность заботливых мужчин 14.04.2024

Стереотип о том, что женщины предпочитают "плохих парней", долгое время был широко распространен. Однако, недавние исследования, проведенные британскими учеными из Университета Монаша, предлагают новый взгляд на этот вопрос. Они рассмотрели, как женщины реагируют на эмоциональную ответственность и готовность помогать другим у мужчин. Результаты исследования могут изменить наше представление о том, что делает мужчин привлекательными в глазах женщин. Исследование, проведенное учеными из Университета Монаша, приводит к новым выводам о привлекательности мужчин для женщин. В рамках эксперимента женщинам показывали фотографии мужчин с краткими историями о их поведении в различных ситуациях, включая их реакцию на столкновение с бездомным человеком. Некоторые из мужчин игнорировали бездомного, в то время как другие оказывали ему помощь, например, покупая еду. Исследование показало, что мужчины, проявляющие сочувствие и доброту, оказались более привлекательными для женщин по сравнению с т ...>>

Случайная новость из Архива

Цифровая прополка 04.11.2003

Для борьбы с сорняками ученые из Боннского университета (Германия) создали сельскохозяйственный опрыскиватель, который сам подбирает нужное средство против каждого сорняка. До сих пор для уничтожения вредных растений применяют смесь гербицидов, из которых каждый "берет" лишь часть видов сорняков.

Результат - перерасход ядохимикатов, лишнее отравление урожая и окружающей среды. На "умном" опрыскивателе установлены три цифровые камеры, передающие изображение двум компьютерам. Первый отсеивает на картинке все, кроме растений, второй сравнивает изображения растений с заложенным в него банком информации по сорнякам, определяет подходящий для каждого гербицид и запоминает, в какой точке поля встречен данный сорняк. При втором проходе, пользуясь составленной таким образом картой, компьютер подает каждому сорняку индивидуальную дозу смертельного для него гербицида.

В дальнейшем, говорят авторы разработки, они намерены совместить обе стадии процесса в один проход по полю.

Другие интересные новости:

▪ Карты памяти CFexpress Type B

▪ Беспилотные автомобили Volvo на дорогах Швеции

▪ Новый рекорд квантовой суперпозиции

▪ Датчик в постели следит за пожилым человеком

▪ Умные очки Tobii Glasses 2

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Типовые инструкции по охране труда (ТОИ). Подборка статей

▪ статья Новые русские. Крылатое выражение

▪ статья Как царь Иван IV Грозный назвал королеву Елизавету I за ее заботы об интересах британской торговли? Подробный ответ

▪ статья Проведение демонстрационных опытов по биологии. Типовая инструкция по охране труда

▪ статья Многокомандная система телеуправления. Энциклопедия радиоэлектроники и электротехники

▪ статья Волшебная ваза. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024