Бесплатная техническая библиотека
ГУН на микросхеме К0308018. Энциклопедия радиоэлектроники и электротехники

Энциклопедия радиоэлектроники и электротехники / Радиолюбителю-конструктору
Комментарии к статье
В старой ненужной шариковой двухкнопочной компьютерной мыши Genius модели CG1402002889 была установлена монтажная плата с контроллером на микросхеме K0308018. К сожалению, в Интернете не было найдено никакой полезной информации об этой микросхеме, поэтому были проведены несложные эксперименты с целью выяснить, нет ли возможностей использовать эту микросхему по иному назначению.
На плату компьютерной мыши от лабораторного БП было подано напряжение 5 В. С помощью осциллографа на выводе 5 этой микросхемы был обнаружен сигнал прямо угольной формы амплитудой около 5 В с частотой 66 кГц. Было выяснено, что частота сигнала на этом выводе зави сит от напряжения на выводе 16, которое задавалось с помощью резистора сопротивлением 270 кОм, установленного между этим выводом и плюсовой линией питания. По итогам экспериментов появилась схема генератора управляемого напряжением (ГУН), выходную частоту которого можно изменять в миллион раз одним переменным резистором без переключения диапазонов.
Схема устройства показана на рис. 1. Частоту генератора устанавливают переменным резистором R1. Чем больше напряжение на выводе 16 микросхемы DD1, тем выше частота выходного сигнала. При напряжении 0,54 В - частота 10 Гц, при 0,74 В - 1000 Гц, при 0,87 В - 10 кГц, при 1,06 В - 50 кГц, при 1,2 В - 100 кГц. Форма сигнала - прямоугольный меандр. В последнем случае снижение напряжения питания с 5 до 3,3 В приводит к уменьшению частоты со 100 до 72 кГц. При верхнем по схеме положении движка переменного резистора R1 минимальное напряжение устройства, при котором сохраняется работоспособность, - 0,9 В, при этом частота выходного сигнала - 31 Гц. При напряжении питания 5 В, частоте 100 кГц и отсутствии нагрузки потребляемый ток - 12 мА. На частоте 0,1 Гц генератор потребляет ток 3...7 мА. С повышением температуры корпуса микросхемы до 80оС выходная частота генератора повышается на 1...2 %.
Рис. 1. Схема устройства
Выход генератора (вывод 5 DD1) - относительно высокоомный, поэтому сигнал на нагрузку подается через буферный двухтактный усилитель, собранный на транзисторах VT1, VT2. К выходу усилителя подключен индикатор на двухкристальном двухцветном светодиоде HL1, который при низком уровне выходного напряжения светит зеленым, а при высоком - красным цветом. Мерцания светодиода заметны при частоте до 30 Гц, после чего цвет свечения становится желто-оранжевым. Резисторы R11, R12 ограничивают ток через светодиод.
Диод VD1 совместно с плавкой вставкой FU1 защищает устройство от переполюсовки напряжения питания, которая может произойти при работе конструкции от лабораторного блока питания во время ее налаживания.
Конденсаторы C1, C2, C4 - блокировочные по цепям питания. Конденсатор C3 подавляет шумы и помехи на управляющем входе микросхемы DD1.
Кроме переменного резистора, светодиода и плавкой вставки, все детали генератора установлены на монтажной плате размерами 26x50 мм (рис. 2). Использована плата от разобранной мыши. Ненужные выступы платы отрезаны. Ненужные детали и дорожки удалены. Новые соединения выполнены тонкими монтажными проводами, для части соединений использованы оставшиеся печатные проводники. Часть элементов установлена со стороны проводного монтажа.
Рис. 2. Детали на монтажной плате
Применены постоянные резисторы Р2-23 или импортные, переменный - СП3-9а, СП4-1. Для плавной подстройки частоты последовательно с резистором R2 можно установить переменный резистор сопротивлением 1...4,7 кОм в реостатном включении. Конденсатор C1 - малогабаритный оксидный импортный, остальные - пленочные или керамические, например, К10-17, К10-50. Диод КД208А можно заменить любым из серий КД209, КД212, КД243, КД247, Ш400х, FR15х. Замена транзистора КТ3107Д - любой из серий КТ3107, КТ6112, КТ6115, КТ668, КТ684, 2SA910, SS9012. Транзистор КТ3102ИМ можно заменить на любой из серий КТ3102, КТ6111, КТ6114, КТ645, КТ660, КТ683, 2SC1815, SS9013. Светодиод L-937EGW с красным и зеленым цветами свечения кристаллов можно заменить любым аналогичным, желательно с повышенной светоотдачей, например L-57EGW.
В зависимости от конкретных требований к выходу устройства взамен усилителя на транзисторах VT1, VT2 можно подключить, например, вход КМОП или ТТЛШ микросхемы. Не обязательно на управляющий вход микросхемы DD1 подавать напряжение с показанного на схеме резистивного делителя напряжения. Источником управляющего напряжения может быть какой-либо датчик неэлектрической величины, например, датчик освещения, влажности, температуры, но управляющее напряжение не должно быть больше напряжения питания устройства. При напряжении питания 5 В и управляющем напряжении более 3,2 В генерация прекращается. При управляющем напряжении 2,9 В частота выходных импульсов - около 2,6 МГц, а потребляемый ток - 55 мА. Поскольку параметры микросхемы K0308018 были неизвестны, такой режим работы был опробован кратковременно.
Автор: А. Бутов
Смотрите другие статьи раздела Радиолюбителю-конструктору.
Читайте и пишите полезные комментарии к этой статье.
<< Назад
Последние новости науки и техники, новинки электроники:
Лабораторная модель прогнозирования землетрясений
30.11.2025
Предсказание землетрясений остается одной из самых сложных задач геофизики. Несмотря на развитие сейсмологии, ученые все еще не могут точно определить момент начала разрушительного движения разломов. Недавние эксперименты американских исследователей открывают новые горизонты: впервые удалось наблюдать микроскопические изменения в контактной зоне разломов, которые предшествуют землетрясению.
Группа под руководством Сильвена Барбота обнаружила, что "реальная площадь контакта" - участки, где поверхности разлома действительно соприкасаются - изменяется за миллисекунды до высвобождения накопленной энергии. "Мы открыли окно в сердце механики землетрясений", - отмечает Барбот. Эти изменения позволяют фиксировать этапы зарождения сейсмического события еще до появления традиционных сейсмических волн.
Для наблюдений ученые использовали прозрачные акриловые материалы, через которые можно было отслеживать световые изменения в зоне контакта. В ходе искусственного моделирования примерно 30% ко ...>>
Музыка как естественный анальгетик
30.11.2025
Ученые все активнее исследуют немедикаментозные способы облегчения боли. Одним из перспективных направлений становится использование музыки, которая способна воздействовать на эмоциональное состояние и когнитивное восприятие боли. Новое исследование международной группы специалистов демонстрирует, что даже кратковременное прослушивание любимых композиций может значительно снижать болевые ощущения у пациентов с острой болью в спине.
В эксперименте участвовали пациенты, обратившиеся за помощью в отделение неотложной помощи с выраженной болью в спине. Им предлагалось на протяжении десяти минут слушать свои любимые музыкальные треки. Уже после этой короткой сессии врачи фиксировали заметное уменьшение интенсивности боли как в состоянии покоя, так и при движениях.
Авторы исследования подчеркивают, что музыка не устраняет саму причину боли. Тем не менее, она воздействует на эмоциональный фон пациента, снижает уровень тревожности и отвлекает внимание, что в сумме приводит к субъективном ...>>
Алкоголь может привести к слобоумию
29.11.2025
Проблема влияния алкоголя на стареющий мозг давно вызывает интерес как у врачей, так и у исследователей когнитивного старения. В последние годы стало очевидно, что границы "безопасного" употребления спиртного размываются, и новое крупное исследование, проведенное международной группой ученых, вновь указывает на это. Работы Оксфордского университета, выполненные совместно с исследователями из Йельского и Кембриджского университетов, показывают: даже небольшие дозы алкоголя способны ускорять когнитивный спад.
Команда проанализировала данные более чем 500 тысяч участников из британского биобанка и американской Программы миллионов ветеранов. Дополнительно был выполнен метаанализ сорока пяти исследований, в общей сложности включавших сведения о 2,4 миллиона человек. Такой масштаб позволил оценить не только прямую связь между употреблением спиртного и развитием деменции, но и влияние генетической предрасположенности.
Один из наиболее тревожных результатов касается людей с повышенным ге ...>>
Случайная новость из Архива ИИ-алгоритм победил настоящего пилота
23.08.2020
Со счетом 5:0 искусственный интеллект, разработанный компанией Heron Systems, одержал чистую победу в симуляции воздушного боя против настоящего пилота истребителя F-16 в рамках соревнований AlphaDogfight Trials. Их организовало Управление перспективных исследовательских проектов Министерства обороны США (DARPA). Перед этим он одержал победу над всеми остальными ИИ-алгоритмов, представленными другими командами.
В течение трех дней, в рамках которых длились соревнования, в симуляторе воздушного боя сошлись несколько ИИ-систем. Они продемонстрировали свои способности по управлению истребителем F-16, а также в уничтожении условного противника в ходе классического воздушного боя. Примечательно, что свои разработки 9 команд, принявших участие в соревнованиях, представили менее чем за год с момента анонса программы в сентябре 2019-го.
Искусственный интеллект, разработанный небольшой командой Heron, состоящей из ИИ-специалистов из штатов Мэриленд и Виргиния, одолел 8 других команд, включая представленную военно-промышленной корпорацией Lockheed Martin. Последняя заняла второе место среди боровшихся между собой ИИ.
Еще за неделю до официальных соревнований их ИИ-алгоритм не был до конца готов и толком даже не умел нормально управлять виртуальным истребителем. Но непосредственно на соревнованиях он показал себя во всей красе. В каждом бою виртуальный пилот применял очень агрессивную тактику. Он проводил мастерские заходы в тыл условного противника и наносил точные попадания по истребителю врага. Ему даже проиграл настоящий пилот ВВС США. Имя летчика не сообщается, но указывается, что он является выпускником центра подготовки летчиков-истребителей "Неллис", расположенного в штате Невада. По словам Джастина Мока, ИИ-пилот продемонстрировал "сверхчеловеческие возможности точного наведения на цель" в рамках этого боя.
В обозримом будущем DARPA планирует доставить симулятор, использовавшийся на соревнованиях, в центр подготовки пилотов "Неллис", где другие летчики смогут попытать свои силы в противостоянии с ИИ. Следующим шагом для агентства станет переход к испытаниям возможностей ИИ при выполнении других типов боевых задач в воздухе.
Ключевая цель программы DARPA - создание ИИ, который сможет более активно принимать участие в настоящих воздушных боевых действиях.
|
Другие интересные новости:
▪ Сверхбыстрые SSD Samsung PM1725 и PM1633
▪ Cверхчувствительная электронную кожа
▪ Канатная аккумуляторная лебедка
▪ Технология на кончике золотого волоска
▪ Ворованный шедевр искусства найдется
Лента новостей науки и техники, новинок электроники
Интересные материалы Бесплатной технической библиотеки:
▪ раздел сайта Советы радиолюбителям. Подборка статей
▪ статья Линотип. История изобретения и производства
▪ статья Что такое центробежная сила? Подробный ответ
▪ статья Работа вблизи действующих железнодорожных линий и автомобильных дорог. Типовая инструкция по охране труда
▪ статья Однотактный стереоусилитель на пентодах. Энциклопедия радиоэлектроники и электротехники
▪ статья Светящиеся растворы. Химический опыт
Оставьте свой комментарий к этой статье:
Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua
2000-2025