Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Особенности применения оксидных конденсаторов в цепях питания микропроцессоров

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Компьютеры

Комментарии к статье Комментарии к статье

Для повышения надежности работы компьютера сильно нагревающиеся узлы (процессоры, чипсет, транзисторы блока питания) снабжают теплоотводами, устанавливают дополнительные вентиляторы в системный блок и на винчестеры. Но оказывается, тепловыделяющими элементами являются и оксидные конденсаторы фильтров питания этих узлов. Отчего это происходит и что надо сделать, чтобы предотвратить их нагрев, рассказывается в статье.

В микропропроцессоре к шине питания подключены миллионы транзисторов цифровых узлов, работающих по заданным программами алгоритмам, с суммарным потреблением мощности, достигающим нескольких десятков ватт. В первом приближении их подключения к шине питания являются случайными, поэтому в дальнейшем, для упрощения изложения, будем называть их шумами [1].

Длительность фронта изменения состояния ключей в микропроцессоре не превышает 10-8 с, поэтому, несколько занижая ширину спектра генерируемых шумов (токов), можно определить его верхнюю границу frp, как более 100 МГц (frp > 1/τф [2]), а полосу частот - от 0 до более чем 100 МГц. В этом диапазоне сосредоточено 90 % мощности генерируемых шумов. Учитывая случайный (шумоподобный) характер процессов, реально этот диапазон еще шире.

Таким образом, микропроцессоры являются сложными нагрузками для источников питания и генерируют в цепях питания токи широкого спектрального состава (сотни мегагерц) и большой мощности (до 5...20 Вт). Максимальные токи генерируются при 100 %-ной загрузке микропроцессора.

Рассмотрим для примера схему цепи питания ядра микропроцессора (рис. 1) в системной плате BE6-II фирмы Abit (она анонсирована как плата для разгона процессоров).

Особенности применения оксидных конденсаторов в цепях питания микропроцессоров

Напряжение питания 2,05 В через дроссель L1 и фильтр из трех оксидных конденсаторов С1-C3 емкостью 1500 мкФ подается на выводы питания процессора. Конструктивная емкость См имеет малую собственную индуктивность и поэтому хорошо шунтирует высокочастотные (более 100 МГц) составляющие мощности генерируемых шумов.

В качестве С1- C3 применены высококачественные гелевые оксидные конденсаторы с предельной рабочей температурой +105 °С, способные рассейвать мощность 0,5...5 Вт. Возможно, это и позволило производителям не обращать внимания на режим их работы.

Измерения показали, что в процессе длительной работы компьютера, в котором установлены два корпусных вентилятора (в блоке питания и дополнительный), процессор Celeron с вентилятором Golden Orb и видеокарта с вентилятором, нагрев корпусов упомянутых конденсаторов доходил до +60...80 °С. При высоких температурах наружного воздуха последовательно вышли из строя два из трех конденсаторов фильтра: вначале произошло механическое разрушение корпуса одного из них, после чего компьютер начал периодически "зависать" во время работы, затем то же самое случилось со вторым конденсатором и система начала отказывать уже на этапе обработки BIOS. Причина "зависаний" - появление в цепях питания выбросов напряжения, соизмеримых с амплитудой импульсов управляющих сигналов. Такие выбросы проникают в цепи управления или данных и нарушают работу процессора и целостность данных.

По температуре корпусов оксидных конденсаторов можно заключить, что они рассеивают мощность около 3...5 Вт В чем же причины нагрева? Как известно, нагрев оксидного конденсатора определяется мощностью, выделяемой в его объеме, т. е. потерями в диэлектрике и металлических элементах. Потери описываются тангенсом угла потерь: tg δс = Рп/Р = (Рм + Рд)/Р = tg δМ + tg δД, где Рп - мощность потерь; Рм - мощность потерь в металле; Рд - мощность потерь в диэлектрике; tg δМ и tg δД - тангенс угла потерь для металла и диэлектрика соответственно. Типовое значение tg δС оксидного конденсатора - (1000...2000)-10-4 на частоте 50 Гц. При таких его значениях от 10 до 20 % мощности низкочастотных токов переходят в тепло, а учитывая, что спектр фильтруемых токов (напряжений) простирается до десятков мегагерц и tg δС увеличивается с ростом частоты (tg δМ = Rп2πfС), в тепло переходит более 80% энергии шума, генерируемой процессором и фильтруемой цепями питания.

Как влияет на работу оксидного конденсатора повышение температуры?

Сопротивление изоляции с ростом температуры на 10 °С падает в 1,26.. .2 раза, а при повышении температуры до предельной +105 °С - в 7...350 раз (минимальные значения соответствуют неорганическим диэлектрикам, а максимальные - органическим). Электрическая прочность конденсатора снижается в три раза при повышении частоты приложенного напряжения в 10 раз (при номинальной мощности потерь) [3].

Все сказанное выше говорит о том, что использовать оксидные конденсаторы в цепях питания процессоров без принятия специальных мер недопустимо. Несоблюдение этого условия приводит к снижению надежности системной платы и может спровоцировать их выход из строя даже в рабочем интервале температур.

Напрашивается простое решение: для предотвращения проникания в оксидные конденсаторы высокочастотных составляющих (вплоть до десятков мегагерц) установить в непосредственной близости от выводов процессора бескорпусный керамический конденсатор емкостью 0,033 мкФ, а в качестве преграды низкочастотным составляющим (до сотен килогерц) включить керамический конденсатор емкостью 3,3...4,7 мкФ. Из-за малого tg δС таких конденсаторов шунтированная энергия не переходит в тепло. Суммарная реактивная мощность этих конденсаторов - 30 ВАр.

Измененная схема цепи питания ядра микропроцессора показана на рис. 2.

Особенности применения оксидных конденсаторов в цепях питания микропроцессоров

Доработка была выполнена на данной плате, что привело к снижению температуры корпусов оксидных конденсаторов до +20...30°С. Плата успешно выдержала испытания в жаркий период лета 2002 г. при температуре воздуха в помещении +40...50 °С. Кроме того, снизился уровень излучаемых компьютером помех.

Подобной доработке целесообразно подвергнуть системные платы компьютеров, используемых в качестве серверов, других компьютеров, работающих со 100 %-ной нагрузкой (например, в системах распределенных вычислений), а также видеокарты, т. е. все узлы, в которых процессоры работают с предельной нагрузкой. Полезна она и в компьютерах, используемых не столь интенсивно: снижение тепловыделения в системном блоке на 10...25 Вт благоприятно скажется на надежности работы системы.

Литература

  1. Ott Henry W. Noise reduction techniques in electronic system. - John Wiley & Sons, N-Y 1976.
  2. Гоноровский И. С. Радиотехнические цепи и сигналы. 4.1. - М.: Советское радио, 1967.
  3. Дулин В. Ж., Жук М. С. Справочник по элементам радиоэлектронных устройств. - М.: Энергия, 1977.

Автор: А.Сорокин, г.Радужный Владимирской обл.

Смотрите другие статьи раздела Компьютеры.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Растения сигнализируют об опасности вулканической активности 17.06.2025

Извержения вулканов - одни из самых разрушительных природных явлений, и своевременное их предсказание является важной задачей для защиты жизни и имущества людей. Современные технологии позволяют отслеживать сейсмическую активность, тепловые аномалии и газовые выбросы, однако ученые из разных стран продолжают искать новые, более ранние признаки приближающейся опасности. Недавнее исследование команды под руководством вулканолога Николь Гвинн продемонстрировало необычный способ раннего обнаружения вулканической активности с помощью изменений в растительности вокруг вулкана Этна - одного из самых активных вулканов Европы. В ходе двухлетних наблюдений ученые выявили 16 случаев, когда увеличение содержания углекислого газа (CO2) в воздухе или почве совпадало с ростом показателя NDVI - нормализованного индекса растительности, отражающего интенсивность фотосинтеза и здоровье зеленых насаждений. Этот индекс широко используется для оценки густоты и жизнеспособности растительного покрова на сп ...>>

Магнит без использования полезных ископаемых 17.06.2025

Технологии все больше зависят от редких и дорогих материалов, добыча которых сопряжена с экологическими и геополитическими рисками. В связи с этим поиск альтернативных решений становится одной из важнейших задач науки и промышленности. Недавно американские ученые во главе с исследователем китайского происхождения Цзянь-Пин Ванг разработали магнит, изготовленный исключительно из железа и азота, который не содержит традиционных редкоземельных элементов. Это открытие может кардинально изменить подход к производству магнитных материалов и значительно снизить зависимость от нестабильных международных поставок. В отличие от широко используемых сегодня магнитов, содержащих редкие полезные ископаемые, такие как самарий и диспрозий, новый магнит отличается более простой и экологичной составной частью. По словам ученых, магнит, созданный из железа и азота, обладает силой магнитного поля, которая превосходит многие известные материалы на рынке. Это делает его перспективной заменой для постоянн ...>>

Скука полезна творческим людям 16.06.2025

Когда информационный поток непрерывно заполняет наше сознание, умение сделать паузу становится особенно важным. Именно в моменты кажущейся скуки мозг получает возможность перезагрузиться и активировать скрытые ресурсы, стимулирующие творческое мышление и саморефлексию. Ученые из Университета Саншайн-Кост в Австралии провели исследование, которое подтверждает, что короткие периоды скуки могут быть полезны для творческих людей и не только. Скука возникает в тот момент, когда способность человека удерживать внимание начинает снижаться, и активируется так называемая сеть пассивного режима мозга. Эта система отвечает за внутренние мысли и саморефлексию, в то время как активность исполнительной сети, которая обычно помогает сосредоточиться, заметно снижается. Таким образом, скука становится не просто неприятным ощущением, а своего рода переключателем, дающим мозгу возможность отдохнуть от постоянной концентрации. Современный ритм жизни сопровождается постоянной стимуляцией симпатическо ...>>

Случайная новость из Архива

Усовершенствование квантовых вычислителей 11.07.2021

Вычислительные возможности современных суперкомпьютеров могут поражать воображение, но ожидается, что квантовые компьютеры превзойдут даже самые мощные из этих машин. Благодаря огромному объему памяти и скорости работы, квантовые компьютеры смогут решать проблемы, которые в настоящее время не под силу ни одному процессору.

Европейские исследователи, работающие в рамках проектов MaGnum и microSPIRE, финансируемыми ЕС, разработали потенциально новую кубитную систему, использующую вращение так называемых "дыр".

Полупроводники состоят из искусственных квазичастиц, представляющих собой совокупность электронов и дырок. Дырками принято называть носители положительного заряда, равного элементарному заряду, в полупроводниках. Хотя дырки не являются настоящими частицами, у них есть много общих свойств с электронами. Они взаимодействуют, когда подходят друг к другу, и они также обладают квантово-механическим свойством спина.

Дыры в таких материалах, как металлоидный германий, являются отличными кандидатами на роль спиновых кубитов. Ученые построили наноструктуру из различных слоев германия и кремния, что позволило им ограничивать дырки двумерной областью.

Ученые из L-NESS уложили друг на друга несколько различных смесей кремния и германия толщиной всего несколько нанометров. Это позволило ограничить отверстия слоем, богатым германием, в середине. Сверху добавили крошечные электрические провода - так называемые ворота - для управления движением отверстий путем подачи на них напряжения. В итоге электрически положительно заряженные дырки реагировали на напряжение и могли очень точно перемещаться внутри своего слоя.

Исследовательская группа использовала эту технику, чтобы максимально приблизить две дыры друг к другу, что помогло бы им взаимодействовать во время вращения и образовать спиновый кубит. Что еще более важно, они смогли создать кубит из двух взаимодействующих спинов дырок, используя менее 10 миллитеслей напряженности магнитного поля.

Другие интересные новости:

▪ Беспилотный космический корабль-фабрика

▪ Полезные свойства моркови для кожи и организма

▪ Как муравьишка домой спешил

▪ Образование влияет на продолжительность жизни

▪ Мобильный телефон высшего класса V80 от Motorola

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Автомобиль. Подборка статей

▪ статья Критика - легка, искусство - трудно. Крылатое выражение

▪ статья Чем отличаются люди, у которых наблюдают Иерусалимский синдром? Подробный ответ

▪ статья Измерение расстояний по времени в пути. Советы туристу

▪ статья Светодинамическая светодиодная лампа - из КЛЛ. Энциклопедия радиоэлектроники и электротехники

▪ статья Концентрация силы. Физический эксперимент

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025