Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Грозозащита локальных сетей. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Компьютеры

Комментарии к статье Комментарии к статье

Одна из проблем, с которой приходится сталкиваться разработчикам локальных компьютерных сетей, - обеспечение стойкости сетевого оборудования к различным внешним воздействиям. Особая роль отведена устройствам грозозащиты. С развитием "домашних сетей" эта проблема становится по-настоящему острой, поскольку немалая доля оборудования выходит из строя по вине статического электричества.

Тема устройства грозозащиты традиционно является одной из наиболее обсуждаемых среди радиолюбителей и профессионалов и окутана разного рода мифами и неточностями. В предлагаемой статье дается ответ на вопрос: возможно ли противостоять слишком мощному для аппаратуры воздействию грозовых разрядов, и определены пути и методы защиты активного оборудования.

Попытки защиты от грозовых разрядов были известны задолго до нашей эры. Во время археологических раскопок в Египте найдены надписи на стенах разрушенных храмов, из которых следует, что установленные вокруг храмов мачты служили для защиты от "небесного огня".

Колебательный характер грозового разряда был доказан еще до экспериментальных работ Г. Герца. Важным оказался тот факт, что, кроме значительного электростатического потенциала, вызванного перемещением с большой скоростью капель воды, пылевых частиц и кусочков льда, грозовой разряд действует как мощный радиопередатчик, порождающий сильное электромагнитное излучение. Спектральный состав этого излучения лежит в диапазоне от нескольких герц до десятков килогерц, наибольшая плотность которого находится в районе 5...8 кГц. По этой причине трансформаторная развязка устройств от информационных линий, выполненных витой парой (ЛВВП), нередко оказывается бессильной. Помеха огромной мощности проходит через развязывающий трансформатор, не разрушая его, но повреждая электронику.

Исследования показали, что длительность таких импульсов может составлять от 1 до 500 мкс и более, а напряжение - от сотен вольт до десятков киловольт. В результате длительных исследований различными лабораториями мира были получены усредненные параметры импульсов грозовых разрядов. На линиях электропередач и телефонии длиной, измеряемой километрами, возможны импульсы напряжения до 20...25 кВ и тока до 10 кА. В более коротких линиях, длиной в сотни метров, наводятся импульсы напряжения до 6 кВ и тока до 5 кА, а в линиях, проходящих внутри зданий, - до 6 кВ и до 500 А.

По статистике, опубликованной на сайте <nag.ru/goodies/book/ 2ch4-4.html>, процент "выживания" оборудования, которое подключено к воздушным линиям, выполненным неэкранированной витой парой, составляет всего 50 %. Цифры, полученные автором при обслуживании локальной сети одного из предприятий, в целом полностью подтверждают сказанное.

А выход из строя аппаратуры, подключенной к линиям из коаксиального кабеля, не редкость даже внутри кирпичных зданий. На подобных воздушных линиях оборудование без специальных мер защиты практически "не живет".

Сразу заметим, что стопроцентной защиты от подобного рода воздействий не существует, но минимизировать потери, исходя из разумного компромисса между стоимостью, сложностью и эффективностью устройств защиты, несомненно, можно. Конечно, неплохо использовать "классические" методы: переход на оптоволоконные кабели, отказ от открытых линий, экранирование кабельной системы, но порой все это оказывается недоступно для средних и мелких сетей вследствие высокой стоимости и сложности монтажа.

Итак, рассмотрим основные причины выхода из строя оборудования во время грозы.

1. Образование статического электричества на кабелях и аппаратуре в результате влияния неподвижных зарядов, накопленных в грозовом облаке.

Наиболее подвержены влиянию статических зарядов воздушные линии. Причем значительный заряд может также накапливаться в сухую погоду зимой во время снегопада и летом во время так называемых "песчаных метелей". Основной метод защиты - обеспечение отвода статического электричества с помощью заземления экрана и (или) проводящей траверсы и установки на обоих концах кабеля разрядников. Здесь на первое место выходит правильность выполнения заземления и надежность разрядников, к которым предъявляются высокие требования по отводу значительного тока.

2. Наведение в кабельной системе импульсов высокого напряжения, которые возникают в результате воздействия мощного электромагнитного поля, порождаемого грозовыми разрядами.

Если применяемая ЛВВП не экранирована, в результате воздействия мощной электромагнитной волны на каждом шаге скрутки наводится небольшое напряжение, в пределах нескольких милливольт. Если ЛВВП изготовлена идеально и площадь контуров одинакова, суммарная наведенная ЭДС близка к нулю. Реально же шаг скрутки далеко не одинаков, поэтому полной взаимной компенсации элементарных ЭДС не происходит, и чем длиннее кабель, тем выше может быть напряжение между проводниками одной пары в результате электромагнитного импульса, создаваемого молнией. Это напряжение может достигать нескольких сотен вольт.

Основной метод защиты - экранирование, установка на концах кабеля устройств защиты, выравнивающих потенциалы, при которых максимальное напряжение между любыми двумя проводами в кабеле не превышает7... 10 В. По тенциал, превышающий сотни вольт относительно земли, снижает разрядник.

3. Броски напряжения питающей сети.

Это довольно часто встречающаяся причина выхода из строя оборудования "целиком". В сети 220 В нередко происходят броски напряжения до нескольких тысяч вольт. Причины тому - срабатывание предохранителей на подстанции, разряд молнии, помеха от других мощных потребителей энергии.

Традиционные методы защиты - повышение надежности штатных источников питания, применение источников бесперебойного питания и устройств защиты от повышения напряжения в сети.

4. Изменение потенциала заземляющих устройств.

Оно возникает при близком разряде молнии в поверхность земли. Основная причина выхода из строя аппаратуры - большая разность потенциалов на заземляющих шинах оборудования, установленного на значительном расстоянии друг от друга. В этом случае по кабельным линиям и цепям входов/выходов протекает очень большой уравнивающий ток, который разрушает электронное или электрическое оборудование. Минимизировать потери в этом случае можно, строго соблюдая правила монтажа заземляющих устройств.

Одно из лидирующих позиций по продажам занимают устройства грозозащиты (УГ) для бытового применения ProtectNet фирмы АРС. Однако при весьма доступной цене и внешней привлекательности эти УГ для ЛВВП не лишены недостатков. Примененные в них металлооксидные варисторы, хотя и обладают высоким быстродействием и очень низкой ценой, не способны надежно защитить оборудование на неэкранированных воздушных линиях. Остаточное напряжение на них может в несколько раз превышать предельно допустимое для защищаемой аппаратуры. Это объясняется неидеальной вольт-амперной характеристикой варисторов и зависимостью напряжения от амплитуды импульса тока, протекающего через них. Необходимо также учитывать, что защитные элементы постепенно изменяют свои параметры, деградируют, если через них протекает ток, близкий к предельному. В этом случае у варисторов уменьшается внутреннее сопротивление и они, в конце концов, замыкают защищаемую линию. Практически через пару лет эксплуатации на воздушных линиях защитные свойства приборов теряются и увеличиваются потери, поэтому становится невозможным их применение в высокоскоростных сетях на значительных расстояниях.

Во многих УГ отечественного производства в качестве разрядников используют либо неоновые лампы, либо "неонки" от стартеров ламп дневного света. Это обусловлено в основном низкой стоимостью подобных защитных элементов. На взгляд автора, такое решение не очень удачно, поскольку неоновые лампы обладают большим сопротивлением при пробое и невысоким быстродействием.

Продолжительные испытания неэкранированной ЛВВП 100-мегабитной сети длиной сто метров, протянутой между зданиями, показали, что неплохо справляется со своими обязанностями устройство, схема которого показана на рис. 1. Оно представляет собой многофазный диодный мост на диодах VD1 VD16, в диагональ которого включен защитный диод VD17, ограничивающий напряжение между любыми двумя проводниками линии на уровне около 8 В. Применение ограничительных диодов фирмы Transil обусловлено существенными отличиями параметров таких приборов от стабилитронов. Например, время срабатывания ограничительного диода не превышает нескольких пикосекунд, а пиковая рассеиваемая мощность (в течение 1 мс) составляет 1500 Вт.

Грозозащита локальных сетей
(нажмите для увеличения)

К разъему XS1 подключают линию, а к разъему XS2 - сетевое оборудование. Кабель, соединяющий УГ с сетевым оборудованием, должен быть минимальной длины. Каждый проводник информационного кабеля соединен с землей через газонаполненные разрядники F1-F4, которые обеспечивают отвод потенциала статического электричества, превышающего 90 В. Специализированные разрядники Epcos Т83-А90Х допускают прохождение импульсного тока 10 кА длительностью 8/20 мкс, характерного для грозового разряда. Сдвоенные разрядники применены исходя только из экономических соображений, вместо них можно использовать любые, удовлетворяющие указанным выше требованиям. Вместо диодов 1N4007 (VD1-VD16) можно использовать любые аналогичные выпрямительные диоды импортного и и отечественного производства с допустимым обратным напряжением не менее 1000 В, способные работать на частотах выше 10 кГц.

УГ собрано на печатной плате из двусторонне фольгированного стеклотекстолита толщиной 1,5 мм. Чертеж печатной платы устройства показан на рис. 2.

Грозозащита локальных сетей

Фольга на плате со стороны элементов выполняет функцию экрана, ее удаляют только около выводов деталей, зенкуя отверстия. Средний вывод разрядников припаивают непосредственно к фольге со стороны деталей. Заземляющий проводник вставляют в отверстие диаметром 2 мм и припаивают к обеим сторонам платы. Для уменьшения перекрестных наводок перемычки 1 и 2,3 и 6, 4 и 5, 7 и 8 можно попарно свить двумя-тремя витками. Внешний вид собранной платы УГ показан на рис. 3.

Грозозащита локальных сетей

Устройство смонтировано в корпусе стандартной двойной розетки RG45B (рис. 4).

Грозозащита локальных сетей

Поскольку в этой розетке нумерация выводов разъемов XS1 и XS2 перевернута относительно друг друга, пришлось на печатной плате использовать перемычки. В случае другого варианта монтажа УГ перемычки можно исключить. Штатные ножевые разъемы с платы розетки удаляют, а вместо них запаивают изогнутые штыри (рис. 5), на которые монтируют плату УГ (рис. 6).

Грозозащита локальных сетей

Грозозащита локальных сетей

Если нет необходимости в защите всех восьми проводников кабеля, УГ можно собрать по упрощенной схеме, показанной на рис. 7. Неиспользуемые проводники соединяют вместе и через разрядник F2 (Epcos N81-А90Х) подключают к заземлению.

Грозозащита локальных сетей
(нажмите для увеличения)

Для защиты источников питания от коротких всплесков напряжения в сети 220 В применяют устройство, схема которого показана на рис. 8. Его включают в разрыв сетевого провода возможно ближе к блоку питания, например, встраивают в сетевую розетку.

Грозозащита локальных сетей

Если длина низковольтной (9... 12 В) цепи питания аппаратуры составляет несколько метров и более, например, питание подводят по свободным парам или неэкранированным проводам, то необходимо установить УГ, которое собирают по схеме рис. 8, отличающейся тем, что вместо двух используют только один ограничительный диод 1.5КЕ18, включенный катодом к плюсу питания. Устройство подключают возможно ближе к активному оборудованию в разрыв низковольтной цепи питания постоянного тока.

Все виды УГ требуют обязательного подключения к заземлению или защитному занулению, будем считать, что это, в нашем случае, одно и то же. При его отсутствии все мероприятия по грозозащите практически сводятся к нулю.

Остановимся на основных моментах, касающихся подключения УГ к заземлению. Согласно Правилам Устройства Электроустановок (ПУЭ), электрическая сеть в жилых домах состоит из фазы (L), рабочего нуля (N) и защитного нуля (РЕ), подключаемого к корпусу распределительного щита на лестничной площадке и среднему контакту розетки в квартире. Если ваш дом построен после 1998 г., то с большой степенью вероятности можно предполагать, что к розеткам защитный нуль подведен. Проверить его наличие можно, подключив лампу накаливания на напряжение 220 В относительно фазы сначала к нулевому проводу, затем к среднему контакту розетки. В обоих случаях лампа должна гореть ярко и ровно, если при подключении лампы к среднему контакту произойдет срабатывание устройства защитного отключения (УЗО) в щите, это лишь подтвердит наличие защитного нуля

Если же в помещение защитный нуль не подведен, его придется провести самому. Для этого потребуется провод сечением не менее 1,5 мм2, чем больше, тем лучше. Один конец провода закрепляют под любой свободный болт шины, соединенной с корпусом распределительного щита, второй соединяют с заземляющим контактом розетки или УГ. Использовать в качестве защитного зануления батарею отопления или водопроводные трубы не допустимо. Одна из причин - высокое сопротивление подобного "заземления". Кроме того, в некоторых случаях потенциал на батарее может быть отличен от нуля, например, если сосед использует трубы в качестве рабочего нуля из-за разрыва нулевого проводника в проводке, что категорически запрещено. И хотя в подвале здания теоретически должна существовать система выравнивания потенциалов, на практике встречается всякое.

Если в городских квартирах все более-менее понятно, то владельцам, например, сельских домов непросто определиться с правильным выбором защитного зануления. Обычно в сельские дома напряжение 220 В подводят воздушными линиями электропередачи, и использовать в качестве защитного рабочий нуль опасно. При возникновении аварийной ситуации (обрыв нулевого провода на линии электропередачи, падение дерева на линию электропередачи и т. д.) на нулевом проводе возможно появление потенциала, отличного от нуля, вплоть до фазного напряжения.

В этом случае в качестве устройства защитного зануления можно использовать естественные заземлители. Пункт 1.7.70 ПУЭ по этому поводу гласит: "В качестве естественных заземлителей рекомендуется использовать: проложенные в земле водопроводные и другие металлические трубопроводы, за исключением трубопроводов горючих жидкостей, горючих и взрывчатых газов и смесей, канализации и центрального отопления; обсадные трубы скважин; металлические и железобетонные конструкции зданий и сооружений, находящиеся в соприкосновении с землей; металлические шунты гидротехнических сооружений, водоводы, затворы и т. п.; свинцовые оболочки кабелей, проложенных в земле. Алюминиевые оболочки кабелей не допускается использовать в качестве естественных заземлителей. Если оболочки кабелей служат единственными заземлителями, то в расчете заземляющих устройств они должны учитываться при количестве кабелей не менее двух; заземлители опор высоковольтных линий (ВЛ), соединенные с заземляющим устройством электроустановки с помощью грозозащитного троса ВЛ. если трос не изолирован от опор ВЛ; нулевые провода ВЛдо 1 кВ с повторными заземлителями при количестве ВЛ не менее двух; рельсовые пути магистральных неэлектрофицированных железных дорог и подъездные пути при наличии преднамеренного устройства перемычек между рельсами".

Также хотелось бы отметить, что согласно ПУЭ "не допускается объединение нулевых рабочих и нулевых защитных проводников различных групповых линий...", т. е. заземлять (занулять) проводящие траверсы, тросы подвеса кабелей и неиспользуемые проводники в кабеле необходимо только с одного конца. Дело в том, что при близком грозовом разряде в землю значительно изменяется потенциал заземляющих устройств, о чем было сказано выше. Кроме того, разность потенциалов между удаленными точками заземления может быть очень большой и при "жестком" заземлении с обоих концов, через кабели и аппаратуру возможно протекание значительного уравнивающего тока.

УГ питающих и информационных линий, аналогичные описанным, можно использовать не только для защиты ЛВВП, но и телефонных, линий противопожарной и охранной сигнализации, систем видеонаблюдения и прочих, удаленных на расстояние более нескольких десятков метров информационных и питающих линий активного оборудования, особенно эксплуатируемого на открытом воздухе.

Автор: Д.Малород, г.Ковров Владимирской обл.

Смотрите другие статьи раздела Компьютеры.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Растения сигнализируют об опасности вулканической активности 17.06.2025

Извержения вулканов - одни из самых разрушительных природных явлений, и своевременное их предсказание является важной задачей для защиты жизни и имущества людей. Современные технологии позволяют отслеживать сейсмическую активность, тепловые аномалии и газовые выбросы, однако ученые из разных стран продолжают искать новые, более ранние признаки приближающейся опасности. Недавнее исследование команды под руководством вулканолога Николь Гвинн продемонстрировало необычный способ раннего обнаружения вулканической активности с помощью изменений в растительности вокруг вулкана Этна - одного из самых активных вулканов Европы. В ходе двухлетних наблюдений ученые выявили 16 случаев, когда увеличение содержания углекислого газа (CO2) в воздухе или почве совпадало с ростом показателя NDVI - нормализованного индекса растительности, отражающего интенсивность фотосинтеза и здоровье зеленых насаждений. Этот индекс широко используется для оценки густоты и жизнеспособности растительного покрова на сп ...>>

Магнит без использования полезных ископаемых 17.06.2025

Технологии все больше зависят от редких и дорогих материалов, добыча которых сопряжена с экологическими и геополитическими рисками. В связи с этим поиск альтернативных решений становится одной из важнейших задач науки и промышленности. Недавно американские ученые во главе с исследователем китайского происхождения Цзянь-Пин Ванг разработали магнит, изготовленный исключительно из железа и азота, который не содержит традиционных редкоземельных элементов. Это открытие может кардинально изменить подход к производству магнитных материалов и значительно снизить зависимость от нестабильных международных поставок. В отличие от широко используемых сегодня магнитов, содержащих редкие полезные ископаемые, такие как самарий и диспрозий, новый магнит отличается более простой и экологичной составной частью. По словам ученых, магнит, созданный из железа и азота, обладает силой магнитного поля, которая превосходит многие известные материалы на рынке. Это делает его перспективной заменой для постоянн ...>>

Скука полезна творческим людям 16.06.2025

Когда информационный поток непрерывно заполняет наше сознание, умение сделать паузу становится особенно важным. Именно в моменты кажущейся скуки мозг получает возможность перезагрузиться и активировать скрытые ресурсы, стимулирующие творческое мышление и саморефлексию. Ученые из Университета Саншайн-Кост в Австралии провели исследование, которое подтверждает, что короткие периоды скуки могут быть полезны для творческих людей и не только. Скука возникает в тот момент, когда способность человека удерживать внимание начинает снижаться, и активируется так называемая сеть пассивного режима мозга. Эта система отвечает за внутренние мысли и саморефлексию, в то время как активность исполнительной сети, которая обычно помогает сосредоточиться, заметно снижается. Таким образом, скука становится не просто неприятным ощущением, а своего рода переключателем, дающим мозгу возможность отдохнуть от постоянной концентрации. Современный ритм жизни сопровождается постоянной стимуляцией симпатическо ...>>

Случайная новость из Архива

Обнаружен новый тип магнита 31.08.2019

Специалисты по химическому инжинирингу из Университета Нью-Йорка, США, продемонстрировали свой новый, необычный проект уникального типа магнита, открытого не так давно в ходе параллельного исследования свойств некоторых видов урана и сурьмы. Специалисты определили новый тип магнита в качестве "магнит-фуфайка", назвав его так потому, что данный тип магнита обладает уникальным качеством изменять свои магнитные свойства, переключаясь от намагниченного состояния к размагниченному. Стоит отметить, что нахождение данного нового типа магнита имеет первостепенное значение для улучшения качества и надежности современных жестких дисков.

В принципе, это же относится и к любому другому записывающему оборудованию. Само нахождение нового магнита было связано с исследованием некоторых конфигураций сурьмы и урана - тогда ученые сумели выявить прототип-магнит Usb2, в котором электроны формировались не стандартным образом, как это обычно бывает в магнитах, а посредством своего рода наслоения и переложения. Что и позволяет новому Usb2-магниту демонстрировать одновременно свойства заряженного и разряженного магнита, в зависимости от того, что конкретно необходимо пользователю.

Соединяясь между собой, электроны в представленном магните формируют нечто вроде разрозненного магнетического поля, в котором управление переключением производится при помощи стандартных триггеров - в этом отношении управление осуществляется традиционными и легкими способами.

Данный тип магнита-фуфайки наверняка станет отличным подспорьем для существенного технического улучшения текущих технологий и способов создания жестких дисков и прочего запоминающего оборудования - в частности, сделав это оборудование более надежным, устойчивым к различным видам деформации и более длительно живущим, что весьма и весьма важно.

Другие интересные новости:

▪ Зарядка электромобилей в движении

▪ Беспилотные аппараты сами построили мост

▪ Черника поможет справиться болезнью Альцгеймера

▪ Четыре дюйма для плейеров

▪ Компактная видеокамера Sanyo Hacti HD1

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Нормативная документация по охране труда. Подборка статей

▪ статья Где стол был яств, там гроб стоит. Крылатое выражение

▪ статья Какая часть наследственной информации отражает индивидуальность человека? Подробный ответ

▪ статья Инженер по пожарной безопасности. Должностная инструкция

▪ статья Генератор ПЧ для настройки приемников. Энциклопедия радиоэлектроники и электротехники

▪ статья Размножающаяся монета. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025