Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Электронная кость. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Начинающему радиолюбителю

Комментарии к статье Комментарии к статье

[an error occurred while processing this directive]

Всем знакома обыкновенная игральная кость - кубик, на грани которого нанесены от одной до шести точечных меток. Известно, что именно анализ результатов бросания такой кости был заложен в основу теории вероятности. С давних пор игральные кости являются обязательным элементом многих игр. Но оказывается, что этот "инструмент" можно выполнить и на основе электроники. Такая "кость" не становится на ребро, не падает на пол, да и подбрасывать ее не придется. Достаточно лишь нажать кнопку, и через несколько секунд выпадет очередной результат.

Возможны различные варианты реализации подобной конструкции. Принципиальная схема одного из них изображена на рис. 1. В нем выпавшее число отображается на цифровом индикаторе HG1, сегменты которого коммутируются электронными ключами на транзисторах VT1-VT9 [1]. Устройство также содержит счетчик, выполненный на микросхеме DD2, и генератор импульсов на элементах DD1.1, DD1.2. Частота следования импульсов зависит от напряжения на конденсаторе С1 и изменяется по мере его разрядки от 10 Гц до долей герца.

Электронная кость

Как известно, микросхема К176ИЕЗ является счетчиком-делителем на 6 со встроенным дешифратором. На выходе дешифратора попеременно появляются коды, соответствующие отображаемым цифрам от 0 до 5. Но поскольку игральная кость характеризуется числами от 1 до 6. то необходимо, чтобы вместо нуля индикатор отображал шестерку. С этой целью счетчик снабжен дополнительным дешифратором, выполненным на элементах DD1.3, DD1.4 и транзисторах VT2, VT9.

Заметим, что признаком цифры 0 можно считать наличие сигналов нулевого уровня на выходах с и е микросхемы DD2. Отображение любой другой цифры в диапазоне от 1 до 5 характеризуется присутствием хотя бы на одном из них уровня логической 1. Следовательно, в тот момент, когда на выходах сие появляется напряжение низкого уровня, индикатор должен отобразить вместо 0 цифру 6. При использовании семисегментного индикатора это означает, что необходимо погасить сегмент b и зажечь d.

Именно это и осуществляет дополнительный дешифратор. Установление нулевых уровней на выводах 11 и 13 микросхемы DD2 приводит к появлению такого же сигнала на выходе элемента DD1.4. В результате открываются транзисторы VT2 и VT9. Первый из них закрывает VT3, что приводит к погасанию сегмента b индикатора HG1. Второй шунтирует транзистор VT8, благодаря чему включается сегмент g. Таким образом и формируется требуемая цифра 6.

Устройство работает следующим образом. В исходном (показанном на схеме) состоянии контактоз кнопки SB1 индикатор HG1 отображает одну из цифр от 1 до 6. При нажатии на кнопку конденсатор С1 быстро заряжается через резистор R2, вследствие чего генератор начинает вырабатывать прямоугольные импульсы с частотой следования примерно 10 Гц. С его выхода сигналы поступают на счетчик DD2. и на индикаторе HG1 появляются непрерывно мелькающие цифры. После отпускания кнопки SB1 конденсатор С1 начинает разряжаться, частота генератора плавно снижается и скорость смены цифр на индикаторе уменьшается. Примерно через 3 с счетчик DD2 останавливается и на индикаторе HG1 отображается одна из цифр от 1 до 6. Его состояние остается неизменным до следующего нажатия на кнопку SB1 Такая фиксация "выпавшей" цифры не только придает игре повышенную занимательность, но и препятствует жульничеству игроков.

Питается устройство от сети. Излишек напряжения гасит конденсатор С6 (номинальное напряжение не менее 600 В). Резистор R15 ограничивает ток через этот конденсатор, a R14 разряжает его после отключения устройства от сети. Постоянное напряжение около 24 В формируется стабилитронами VD2, VD3. Мощность, рассеиваемая на них, невелика, поэтому допустимо их использование без теплоотвода.

На резисторе R10 создается падение напряжения около 9 В, используемое для питания микросхем DD1, DD2 и транзисторов VT1-VT9. Потребляемая устройством мощность не превышает 2 Вт. Следует учесть, что все его элементы находятся под напряжением сети. В связи с этим они должны быть тщательно изолированы от корпуса, если он выполнен из металла.

Вместо ИВ-6 можно применить светодиодный семисегментный индикатор, например, АЛ305А или АЛ305Ж. воспользовавшись рекомендациями, приведенными в [1]. Однако лучше всего выполнить индикатор в традиционной форме игральной кости, с точками вместо цифр. Другими словами, в этом случае получится универсальная грань кубика, на которой будут загораться от одной до шести светодиодных "точек".

Именно такой индикатор применен во втором варианте устройства (рис. 2). Здесь пусковая цепь (SB1, R1 и С1) и генератор импульсов (элементы DD1.1, DD1.2. VD1, С2, C3, R2-R5) аналогичны описанным выше. Счетчик-делитель частоты на 6 выполнен на триггерах DD2, DD4 и элементе DD1.3, подобно тому, как это сделано в [2]. Временные диаграммы, поясняющие его работу, приведены на рис. 3.

Электронная кость
(нажмите для увеличения)

Электронная кость

Поскольку входы С триггеров DD2.2, DD4.1 и DD4.2 соединены с прямыми выходами предшествующих, то счетчик на них работает в режиме вычитания. Он считает в двоичном коде. Его информационными выходами являются выводы 1 микросхемы DD4 (старший разряд) и 13.1 микросхемы DD2 (средний и младший разряды соответственно). Состояние счетчика изменяется по фронту сигнала, формируемого элементом DD1.2.

Включение генератора кнопкой SB1 приводит к появлению прямоугольных импульсов на входе С триггера DD2.1 и входе S DD4.2. При этом на инверсном выходе последнего устанавливается сигнал с уровнем логического 0, разрешающий работу триггера DD2.2 по входу С, и счетчик начинает считать. Когда он досчитывает до 0. на прямых выходах триггеров DD2.1. DD2.2 и DD4.1 устанавливается нулевой уровень.

Вслед за тем первый же перепад из О в 1 на выходе элемента D01.2 переводит названные выходы, а с ними и инверсный выход DD4.2. в единичное состояние. Выходной сигнал DD4.2 сбрасывает триггер DD2.1 по входу R. в результате чего счетчик переходит в состояние, соответствующее цифре 5. Следующий импульс, сформированный элементом DD1.3 (на рис. 3 он выделен штриховкой), переводит инверсный выход триггера DD4.2 в нулевое состояние, разрешая тем самым дальнейший счет. Когда счетчик вновь досчитает до нуля, цикл повторится.

Дешифратор, собранный на микросхеме DD3 и элементе DD1.4. построен таким образом, что состояниям 5. 4, 3. 2. 1 и 0 счетчика соответствуют числа 5. 6.1, 2. 3 и 4 на "грани" игральной кости. Это следует из приводимой таблицы, в которой показано соответствие между уровнями сигналов на выходах счетчика, дешифратора и состоянием светодиодов HL1-HL7. При этом горящему светодиоду в таблице соответствует цифра 1. погашенному - 0.

Поскольку потребляемый устройством ток не превышает 60 мА. его можно питать как от сети, так и от батарей "Крона", "Корунд". При использовании сетевого питания допустимо применение такого же бестрансформаторного источника, что и в первом варианте. Однако в этом случае необходимо напряжение 9 В. в связи с чем один из стабилитронов Д815Д (например. VD3) должен быть заменен на Д815В. а другой (VD2) - на любой кремниевый маломощный диод, например, КД105Б (его катод соединяют с катодом VD3).

Расположение светодиодов HL1-HL7 на грани этого варианта игральной кости показано на рис. 4.

В обоих устройствах вместо микросхем серии К176 допустимо использовать их аналоги из серий К561, 564. Во втором устройстве для замены транзисторов КТ315Г. КТ361Г подойдут любые из этих серий, а светодиодов АЛ307БМ - любые, излучающие в видимом спектральном диапазоне. Диодную сборку КЦ405А можно заменить на КЦ405Б. КЦ405В, КЦ402А-КЦ402В или на четыре диода КД105А-КД105В, включив их по схеме выпрямительного моста.

Литература

  1. Алексеев С. Применение микросхем серии К176. - Радио. 1984. N 4. с. 25-28.
  2. Банников В., Варюшин А. Двутонапьная сирена автосторожа. - Радио. 1993. N" 12, с. 31-33.

Автор: В.Банников, г.Москва

Смотрите другие статьи раздела Начинающему радиолюбителю.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Растения сигнализируют об опасности вулканической активности 17.06.2025

Извержения вулканов - одни из самых разрушительных природных явлений, и своевременное их предсказание является важной задачей для защиты жизни и имущества людей. Современные технологии позволяют отслеживать сейсмическую активность, тепловые аномалии и газовые выбросы, однако ученые из разных стран продолжают искать новые, более ранние признаки приближающейся опасности. Недавнее исследование команды под руководством вулканолога Николь Гвинн продемонстрировало необычный способ раннего обнаружения вулканической активности с помощью изменений в растительности вокруг вулкана Этна - одного из самых активных вулканов Европы. В ходе двухлетних наблюдений ученые выявили 16 случаев, когда увеличение содержания углекислого газа (CO2) в воздухе или почве совпадало с ростом показателя NDVI - нормализованного индекса растительности, отражающего интенсивность фотосинтеза и здоровье зеленых насаждений. Этот индекс широко используется для оценки густоты и жизнеспособности растительного покрова на сп ...>>

Магнит без использования полезных ископаемых 17.06.2025

Технологии все больше зависят от редких и дорогих материалов, добыча которых сопряжена с экологическими и геополитическими рисками. В связи с этим поиск альтернативных решений становится одной из важнейших задач науки и промышленности. Недавно американские ученые во главе с исследователем китайского происхождения Цзянь-Пин Ванг разработали магнит, изготовленный исключительно из железа и азота, который не содержит традиционных редкоземельных элементов. Это открытие может кардинально изменить подход к производству магнитных материалов и значительно снизить зависимость от нестабильных международных поставок. В отличие от широко используемых сегодня магнитов, содержащих редкие полезные ископаемые, такие как самарий и диспрозий, новый магнит отличается более простой и экологичной составной частью. По словам ученых, магнит, созданный из железа и азота, обладает силой магнитного поля, которая превосходит многие известные материалы на рынке. Это делает его перспективной заменой для постоянн ...>>

Скука полезна творческим людям 16.06.2025

Когда информационный поток непрерывно заполняет наше сознание, умение сделать паузу становится особенно важным. Именно в моменты кажущейся скуки мозг получает возможность перезагрузиться и активировать скрытые ресурсы, стимулирующие творческое мышление и саморефлексию. Ученые из Университета Саншайн-Кост в Австралии провели исследование, которое подтверждает, что короткие периоды скуки могут быть полезны для творческих людей и не только. Скука возникает в тот момент, когда способность человека удерживать внимание начинает снижаться, и активируется так называемая сеть пассивного режима мозга. Эта система отвечает за внутренние мысли и саморефлексию, в то время как активность исполнительной сети, которая обычно помогает сосредоточиться, заметно снижается. Таким образом, скука становится не просто неприятным ощущением, а своего рода переключателем, дающим мозгу возможность отдохнуть от постоянной концентрации. Современный ритм жизни сопровождается постоянной стимуляцией симпатическо ...>>

Случайная новость из Архива

Опреснение морской воды с помощью солнечной энергии 14.09.2024

Вода - ключевой ресурс для человечества, однако доступ к пресной воде остается одной из глобальных проблем. Исследователи из Университета Ватерлоо предложили инновационное решение этой задачи, разработав энергоэффективную систему опреснения морской воды, которая использует солнечную энергию. Это устройство может стать прорывом в производстве питьевой воды для регионов, испытывающих дефицит пресной воды, особенно в прибрежных зонах.

Предложенная система использует солнечную энергию для испарения и конденсации морской воды в закрытой системе, что позволяет эффективно отделять соль и другие примеси. В отличие от традиционных систем опреснения, которые требуют регулярного обслуживания из-за накопления соли, эта технология обеспечивает непрерывный процесс. В основе системы лежит способность поглощать и преобразовывать до 93% солнечного света в полезную энергию, что является значительным улучшением по сравнению с текущими методами опреснения.

Одна из ключевых характеристик системы - это высокая эффективность преобразования солнечной энергии в тепло, что позволяет производить около 20 литров пресной воды на каждый квадратный метр поверхности ежедневно. Этот объем соответствует суточной потребности человека в воде, согласно рекомендациям Всемирной организации здравоохранения. Портативность устройства делает его идеальным решением для труднодоступных регионов или мест с ограниченным доступом к водным ресурсам.

Основа устройства - уникальные материалы, в том числе никелевая пена с полимерным покрытием и термочувствительные частицы пыльцы. Эти материалы способны поглощать солнечную энергию по всему спектру, преобразовывая ее в тепло. Процесс испарения воды происходит благодаря капиллярному эффекту, подобному тому, как деревья транспортируют воду от корней к листьям. Вода нагревается на поверхности полимерного слоя и поднимается вверх, что способствует ее эффективному испарению.

Одной из главных проблем традиционных опреснительных установок является накопление соли, которое может засорять мембраны и требовать частого технического обслуживания. Новая система решает эту проблему с помощью самоочищающегося механизма. Когда вода испаряется, соль остается в нижних слоях устройства и выводится, предотвращая засорение. Такой механизм напоминает процесс обратной промывки в бассейнах и позволяет устройству работать бесперебойно в течение длительного времени.

На данный момент система находится на стадии разработки, но ученые планируют провести полевые испытания на море для проверки ее работоспособности и возможностей масштабирования. Если испытания пройдут успешно, технология может стать важным инструментом для решения проблемы нехватки питьевой воды в прибрежных общинах. Также она может способствовать достижению ряда целей устойчивого развития ООН, включая улучшение здоровья и благополучия людей, обеспечение доступности воды и санитарии, борьбу с изменением климата и ответственное потребление ресурсов.

Технология солнечного опреснения воды, предложенная исследователями из Университета Ватерлоо, открывает новые возможности для устойчивого производства пресной воды. Ее энергоэффективность, самоочищающийся механизм и способность обеспечивать людей чистой водой без использования химических веществ и сложных технических систем делают ее привлекательным решением для многих регионов мира. В перспективе эта технология может оказать значительное влияние на глобальное водоснабжение и сыграть важную роль в устойчивом развитии.

Другие интересные новости:

▪ Двухэтажный гараж на даче

▪ Охрана в Интернете

▪ Новый рекорд скорости оптоволоконного соединения

▪ Доля возобновляемых источников энергии в Бразилии - 88,8%

▪ Штурвал вместо руля у Tesla Model S признан опасным

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Электрику. ПТЭ. Подборка статей

▪ статья Ингрид Бергман. Знаменитые афоризмы

▪ статья Какой неофициальный олимпийский рекорд до сих пор принадлежит советской гимнастке Ларисе Латыниной? Подробный ответ

▪ статья Бермудская трава. Легенды, выращивание, способы применения

▪ статья Регулятор напряжения с фазоимпульсным управлением. Энциклопедия радиоэлектроники и электротехники

▪ статья Блок питания для домашней лаборатории, 0-30 вольт 4 ампера. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025