Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Расчет ламповых усилителей. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Начинающему радиолюбителю

Комментарии к статье Комментарии к статье

Усилитель - один из самых распространенных элементов радиоэлектронных устройств, но почему мы начинаем его расчет с устаревшего лампового усилителя? Причин несколько, и главная из них в том, что интерес к ламповой технике вновь возрождается, особенно среди любителей высококачественного звука. Ламповые усилители неприхотливы, надежны, и хотя перенапряжения могут вызвать кратковременные пробои между электродами, после них чаще всего лампа остается работоспособной. Перегрузки по току вызывают разогрев электродов, но остается достаточно времени, чтобы увидеть раскаленный анод и не торопясь выключить питание. Транзисторы же выходят из строя даже при кратковременных перегрузках, моментально, "молча" и навсегда. Добавим, кроме того, что расчеты усилителей на лампах и полевых транзисторах, например, очень похожи.

Расчет любого усилителя начинают с определения его параметров исходя из назначения усилителя: полосы усиливаемых частот, выходного напряжения, тока или мощности, сопротивления нагрузки, входного напряжения и входного сопротивления. Для УЗЧ домашнего радиокомплекса, например, выходная мощность может быть 5 Вт на сопротивлении нагрузки (динамической головке) 4 Ом, полоса частот - 70 Гц...12,5 кГц, входное напряжение - 20 мВ ...1 В при входном сопротивлении не менее 500 кОм. Указанный диапазон входных напряжений позволит подключать усилитель ко многим источникам программ: радиоприемнику, проигрывателю с пьезоэлектрическим звукоснимателем, линейным выходам других устройств.

Такой усилитель целесообразно разделить на две части: предварительный усилитель напряжения, в который обязательно войдет регулятор громкости (усиления) и, возможно, регуляторы тембра (формы АЧХ) и оконечный усилитель мощности. Последний рассчитывают на постоянный уровень входного сигнала, соответствующий выходному сигналу предварительного усилителя.

Итак, рассчитываем усилитель на лампах. Схема простейшего апериодического усилителя на триоде показана на рис. 48.

Расчет ламповых усилителей

Для расчета понадобятся некоторые справочные данные: напряжение и ток накала лампы (цепи накала на схеме не показаны), рекомендуемые напряжение смещения, анодное напряжение и ток, крутизна характеристики S и внутреннее сопротивление лампы RI или ее коэффициент усиления μ. Последние три параметра связаны простым соотношением: μ = SRI

Ламповый каскад хорош тем, что на низких частотах он практически не потребляет мощности от источника сигнала - анодный ток управляется напряжением на сетке. Тем не менее резистор утечки сетки R1 сопротивлением 0,5...4,7 МОм все же необходим, чтобы редкие электроны, осевшие на сетке, не заряжали ее отрицательно, а возвращались через этот резистор на катод. Этот же резистор удобно использовать как регулятор громкости.

Конденсатор С1 нужен для того, чтобы постоянная составляющая входного сигнала (если она есть) не попадала на сетку и не изменяла режим лампы. Его емкость рассчитывают по формуле для частоты среза ФВЧ, которая должна быть меньше наинизшей частоты полосы пропускания fн:

Чтобы сеточный ток отсутствовал, напряжение на сетке всегда должно быть отрицательным относительно катода, поэтому необходимо некоторое напряжение смещения. Практически неудобно использовать отдельный источник отрицательного напряжения, поэтому чаще всего включают в катодную цепь резистор автоматического смещения R2. Анодный ток лампы ia создает на нем падение напряжения Uс, приложенное плюсом к катоду, а минусом - к управляющей сетке. Формула для его расчета проста:

Осталось сосчитать сопротивление нагрузки, учитывая, что на нем упадет примерно половина напряжения источника анодного питания Еа:

Среди широко распространенных двойных триодов наибольшим коэффициентом усиления μ = 100 обладает лампа 6Н2П с параметрами S - 2 мА/В, Ri = 50 кОм, Uc = -1,5 В, Ua = 120 В, ia = = 1 мА (последние два отличаются от приводимых в справочниках 250 В и 1,8 мА, но мы выбрали их по характеристикам лампы из соображений экономичности. Приняв Еа = 240 В, находим R2 = 1,5 кОм, R3 = 120 кОм. Коэффициент усиления каскада на триоде вычисляют так:

Усиление не слишком велико, и при входном сигнале 20 мВ выходное напряжение окажется только 1,4 В, чего может быть недостаточно для полной "раскачки" выходной лампы УМЗЧ. Придется использовать либо два каскада на триодах (тогда усиление будет излишним и его придется уменьшить, например, с помощью ООС), либо один каскад нв другой лампе, дающей большее усиление, - пентоде (рис. 49).

Расчет ламповых усилителей

Он отличается лишь цепью питания экранирующей сетки R3C3. Сопротивление гасящего резистора R3 определяют по формуле

где Ug2 и ig2 - напряжение и ток экранной сетки.

Внутреннее сопротивление пентода велико, поэтому усиление рассчитывают по более простой формуле

Выберем пентод 6Ж1П, как наиболее экономичный. Его параметры Ua = = Ug2 = 120 В, S = 5 мА/В, ia = 7 мА и ig2 = = 3 мА при Uc = - 1,5 В, что дает R2 = = 150 Ом. R3 = 40 кОм, R4 = 17 кОм и Кμ = 85. Практически режимы со столь большим анодным током в предварительных каскадах не используют. Выгодно увеличить сопротивления всех резисторов в несколько раз, существенно уменьшив анодный ток. И хотя крутизна характеристики в таком режиме уменьшится, усиление возрастет и составит 150...200. Для расчета новых параметров при меньшем анодном токе лампы следует воспользоваться ее характеристиками. Впрочем, лампы мало чувствительны к изменениям режима и его легко подобрать экспериментально.

Перейдем теперь к УМЗЧ. Для них выпускают специальные мощные выходные лучевые тетроды и пентоды. В нашем примере подойдет тетрод 6П14П с параметрами Ua = Ug2 = 250 В, S = 11,5 мА/В, ia = 50 мА и ig2 = 5 мА при Uc = - 6 В. Наш выходной каскад будет однотактный, работающий в классе А. Это означает, что ток покоя лампы будет равен номинальному, 50 мА, а при изменении напряжения на управляющей сетке будет изменяться, в пределах от нуля (лампа закрыта) до удвоенного номинального 100 мА (лампа открыта).

Найдем требуемое напряжение ЗЧ на сетке, пользуясь формулой Δia = SΔUBX:

ΔUBx = Δia/S = 50/11,5 = 4,35 В (амплитудное значение).

Сопротивление резистора автоматического смещения в цепи катода должно составить

Если предварительный усилитель на пентоде, рассчитанный выше, обеспечит Кμ = 150, то для получения на сетке выходного каскада амплитуды 4,35 В входной сигнал должен быть равен 4,35/150 = 0,029 В (амплитудное значение), или около 20 мВ (эффективное значение), что соответствует заданным требованиям.

Схемотехнический расчет УЗЧ закончен, можем нарисовать его принципиальную схему (рис. 50). Сопротивления резисторов рассчитаны, осталось выбрать емкости конденсаторов. Их рассчитывают также, как и емкость С1 (см. выше) для низшей частоты полосы пропускания, которую надо взять с запасом, ниже 70 Гц.

Расчет ламповых усилителей

Разумеется, в формулу надо подставлять сопротивление соответствующего резистора. Например, если цепочка R1C1 имеет частоту среза 16 Гц при емкости 0,01 мкФ, то цепочка R2C2 будет иметь ту же частоту среза при емкости 10 мкФ. Полезно проверить и верхнюю частоту полосы пропускания предварительного усилителя, взяв сумму выходной емкости лампы VL1, входной емкости лампы VL2 (берется из справочников) и емкости монтажа С∑ равной 3 + 13,5+ 20 - 40 пФ:

Как видим, она выше требуемой.

Несколько слов надо сказать о назначении развязывающей цепочки R5C5. Значительные колебания тока выходной лампы неизбежно приведут и к изменениям анодного напряжения питания, ведь ламповые усилители обычно питаются от нестабилизиро-ванных источников. Чтобы они не сказывались на работе предварительного каскада (а нам это совершенно не нужно), и установлена цепочка. Конденсатор С5 просто не успевает перезаряжаться в такт с изменениями анодного напряжения. Кроме того, цепочка дополнительно фильтрует фон переменного тока при недостаточном сглаживании пульсаций в фильтре выпрямителя.

Рассмотрим теперь анодную цепь выходного каскада. Максимальную мощность лампа отдаст, если изменения тока от 0 до 100 мА будут сопровождаться максимально возможными изменениями напряжения на аноде, причем максимальному току будет соответствовать минимальное напряжение, которое должно быть, по крайней мере, 20...30 В (иначе возникнут искажения на пиках сигнала). Учтем еще вольт 10 падения напряжения на активном сопротивлении первичной обмотки выходного трансформатора и получим амплитуду переменного напряжения на аноде 250 - 10 - 30 = 210 В. Переменное напряжение складывается с постоянным напряжением питания. Обратите внимание, что при уменьшении анодного тока до нуля (на отрицательной полуволне входного сигнала) мгновенное анодное напряжение будет повышаться до 250 + 210 = 460 В. Как уже упоминалось, лампы легко переносят такие напряжения.

Колебательная мощность сигнала ЗЧ в анодной цепи составит

Р = Um · im/2 = 210 · 0,05/2 = 5,25 Вт.

С учетом небольших потерь в выходном трансформаторе мы выполнили поставленное условие (обеспечили 5 Вт в нагрузке). Найдем требуемое сопротивление первичной обмотки для токов ЗЧ RH:

RH = Um/im = 210/50 = 4,2 кОм.

Зная RH и сопротивление головки Rг, теперь можно найти и коэффициент трансформации выходного трансформатора Т1 с учетом следующего: если трансформатор понижает напряжение в n раз, то во столько же раз он увеличивает ток в цепи вторичной обмотки, тогда сопротивление трансформируется в n2 раз:

На высших частотах звукового спектра усиление УМЗЧ возрастает, поскольку к активному сопротивлению нагрузки RH добавляется индуктивное сопротивление звуковой катушки головки, пересчитанное в первичную обмотку, и сопротивление индуктивности рассеяния самой первичной обмотки трансформатора Т1. Для компенсации подъема параллельно первичной обмотке подключают конденсатор С7, емкость которого трудно поддается расчету из-за неопределенности названных параметров и поэтому подбирается экспериментально, по желаемой форме АЧХ.

Вопрос для самопроверки. Может быть, вам уже надоели теоретические расчеты? Если нет, то рассчитайте усилитель исходя из заданных вами самими требований, а если да, то найдите, например, ненужный ламповый телевизор и разберите его. Из деревянного корпуса получается неплохая акустическая система, если из ДСП вырезать переднюю панель и обтянуть ее тканью. На панели разместите головку, лучше не в центре и лучше две или больше, соединенные последовательно или параллельно, в зависимости от их сопротивления. Соберите усилитель, подобный описанному, и наслаждайтесь "ламповым" звуком. Все детали, необходимые для реализации проекта, в старом телевизоре найдутся.

Автор: В.Поляков, г.Москва

Смотрите другие статьи раздела Начинающему радиолюбителю.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Оптимальная продолжительность сна 15.07.2025

Вопрос о том, сколько нужно спать, чтобы чувствовать себя отдохнувшим, волнует миллионы людей по всему миру. Общепринятая рекомендация - восемь часов сна - давно стала стандартом, однако недавние исследования ставят под сомнение ее универсальность. Оказалось, что продолжительность здорового сна зависит не только от биологии, но и от культурных и социальных условий. Американские ученые провели масштабное исследование, охватившее около пяти тысяч человек из двадцати стран. Полученные данные выявили значительные различия в продолжительности сна в зависимости от места проживания. Например, в Японии средний человек спит всего около шести часов с небольшим, тогда как во Франции этот показатель приближается к восьми. Канадцы, в свою очередь, в среднем спят по семь с половиной часов. Один из руководителей исследования, профессор социальной и культурной психологии Стивен Хайне из Университета Британской Колумбии, подчеркивает, что универсального стандарта сна не существует. По его словам, ...>>

Компьтерная оценка состояния культурных растений 15.07.2025

Современное сельское хозяйство переживает технологическую революцию, и одной из ключевых задач становится точная диагностика состояния растений. Устойчивость к климатическим изменениям, экономное использование ресурсов и повышение урожайности требуют новых подходов. Исследователи из Еврейского университета в Иерусалиме предложили инновационное решение, объединив возможности дронов и искусственного интеллекта. Традиционные методы дистанционного анализа в агросекторе сталкиваются с ограничениями: они не всегда способны точно определить комбинированный стресс у растений, возникающий, например, при одновременном дефиците влаги и азота. Чтобы преодолеть это, израильские ученые оснастили дроны сложной системой сенсоров - гиперспектральными, тепловыми и RGB-камерами. Эти камеры не просто фиксируют изображение, но и собирают обширные данные о состоянии листвы, позволяя "увидеть" скрытые признаки стресса, незаметные невооруженному глазу. Для обработки полученных изображений и сигналов был ...>>

Особенности восприятия старости 14.07.2025

Понятие старости зачастую оказывается субъективным и подвижным: то, что кажется "преклонным возрастом" в юности, в зрелости уже воспринимается иначе. Исследования показывают, что границы старения не столько определяются биологическим возрастом, сколько зависят от психологического восприятия и отношения к собственному телу и уму. Недавнее исследование, проведенное в США среди двух тысяч человек старше сорока лет, позволило ученым определить, в каком возрасте американцы начинают ощущать себя "старыми". Оказалось, что чувство старения в среднем наступает уже к 47 годам, а заметная обеспокоенность внешними возрастными изменениями - примерно к пятидесяти. Это тот момент, когда люди чаще начинают замечать морщины, снижение тонуса кожи и общую усталость. На фоне этих внешних изменений многие участники признались, что испытывают тревогу по поводу когнитивного спада. Более половины респондентов признались, что хотя бы раз в день забывают, что собирались сказать, а четверть - теряют мысль ...>>

Случайная новость из Архива

Эта опасная ветроэнергетика 07.04.2007

На перевале Альтамонт-Пасс, к востоку от залива Сан-Франциско (США), уже около тридцати лет работает крупная ветроэлектростанция. Здесь в 70-х годах прошлого века установили более 5000 ветродвигателей, причем без всякой предварительной экологической экспертизы. Сейчас выяснилось, что ветряки опасны для птиц.

Перевал Альтамонт-Пасс известен своими сильными и почти постоянными ветрами, а в то же время он является важным путем миграции многих видов птиц. По сообщению экологов, под лопастями ветродвигателей ежегодно гибнет от 900 до 1300 птиц, в том числе занесенных в Красную книгу.

Пока владельцам электростанции придется отключать на два месяца половину ветряков, в следующие два месяца - другую половину. Надеются, что эти меры позволят уменьшить гибель птиц. В дальнейшем есть планы заменить ветродвигатели на более современные, установленные на более высоких башнях, чтобы птицы реже в них врезались.

Еще один недостаток, замеченный за ветродвигателями, - они могут создавать помехи радиолокаторам. Но помех можно избежать модернизацией радарной аппаратуры и используемых в ней компьютерных программ.

Другие интересные новости:

▪ Физическая нагрузка полезна для мозга

▪ Робот-охранник с сетью

▪ Компактные сканеры Brother ADS-1100W и ADS-1600W

▪ Искусственный интеллект отличит оригинал картины от подделки

▪ Искусственное солнце

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Электронные справочники. Подборка статей

▪ статья Караоке. История изобретения и производства

▪ статья Какая часть памятника французскому журналисту Виктору Нуару блестит и почему? Подробный ответ

▪ статья Начальник отдела информации. Должностная инструкция

▪ статья Управление электропитанием активной телеантенны. Энциклопедия радиоэлектроники и электротехники

▪ статья БП от принтера Epson для питания УМЗЧ. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:




Комментарии к статье:

Влад
Очень помогла статья. Спасибо огромное! [;)]

Александр
А кто это В. Поляков? Не Владимир ли Тимофеевич, автор многих статей и нескольких книг по синхронному приему и ФАПЧ?

Александр
А как же пентод 6П14П (в статье назван тетродом) и без ООС? В этом случае можно обойтись?


Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025