Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Этот непростой закон Ома. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Начинающему радиолюбителю

Комментарии к статье Комментарии к статье

Нет сомнения, что всем известен закон Ома для участка цепи, показанной на рис. 3,а: U = IR, где U - падение напряжения на участке; I - ток в цепи; R - сопротивление этого участка цепи. Ошибаться в законе Ома стыдно, но если вы еще не запомнили эту формулу, воспользуйтесь рис. 3,б. Достаточно закрыть искомую величину пальцем, чтобы получить ответ, что на что надо умножать или делить. Рекомендуется пользоваться системой единиц СИ, где напряжение выражается в вольтах, сопротивление - в омах, ток - в амперах. Однако при расчетах радиотехнических цепей бывает удобно взять ток в миллиамперах и сопротивление в килоомах - тогда множители 10-3 и 103 сократятся и напряжение по-прежнему получится в вольтах.

Этот непростой закон Ома

Выразим ток I = U/R. Зависимость тока от напряжения прямо пропорционaльная, на графике l(U) она отображается прямой линией (рис. 3,в). Эту зависимость часто называют линейной.

Итак, берем батарею от карманного фонаря на 4,5 В и подключаем к ней последовательно соединенные резистор сопротивлением 1 Ом и амперметр (его всегда включают последовательно с нагрузкой). Вместо ожидаемых 4,5 А получаем значительно меньше! В чем дело, неужели закон Ома не работает? Придется исследовать это явление и подключить параллельно резистору вольтметр. Он покажет напряжение, меньшее 4,5 В и равное U = I·R. Где же "падает" остальное напряжение? На внутреннем сопротивлении батареи, которое мы в предыдущем расчете и не учли. Здесь надо пользоваться законом Ома для полной цепи: I = E/(r + R), где Е - электродвижущая сила батареи (ЭДС, именно она указана на упаковке, а вовсе не напряжение); r - внутреннее сопротивление. Эти два параметра полностью характеризуют источник тока. Схема эксперимента и порядок включения приборов показаны на рис. 4.

Этот непростой закон Ома

Посмотрим, как зависят ток и напряжение на нагрузке от ее сопротивления R. Напряжение на нагрузке U = l·R = ER/(r + R). Если сопротивление нагрузки увеличивать до бесконечности, ток будет стремиться к нулю, а напряжение - к ЭДС. Узнать ЭДС легко, надо просто подсоединить вольтметр (без нагрузки) к выводам батареи. При этом предполагается, что вольтметр "хороший" - высокоомный, т. е. потребляющий пренебрежимо малый ток. Если же нет, то "плохой" вольтметр покажет напряжение, меньшее ЭДС на величину Iв·r где Iв - ток, потребляемый вольтметром.

Устремим теперь сопротивление нагрузки к нулю, тогда ток в цепи будет равен току короткого замыкания Iкз = Е/r. Теперь амперметр, показанный на рис. 4, должен быть "хорошим", т. е. обладающим исключительно малым собственным сопротивлением rа. В противном случае будет измерен не Iкз, а меньший ток, равный Е/(r + rа). Измерять ток короткого замыкания с помощью амперметра можно только у самых маломощных элементов и батарей (тогда он невелик, а очень кратковременное замыкание выводов батарее не вредит). Для многих аккумуляторов Iкз может достигать сотен и тысяч ампер - такой ток плавит медные провода и железные гвозди и уж наверняка испортит ваш амперметр.

К счастью, проводить подобный эксперимент совсем необязательно, а внутреннее сопротивление легко найти расчетным путем. Если высокоомным вольтметром измерить ЭДС, а затем напряжение U на известной нагрузке R, то из закона Ома для участка цепи легко найти I = U/R. Можно и измерить ток, тогда даже не обязательно знать сопротивление. Теперь преобразуем формулу закона Ома для полной цепи: r = Е/I - R. Подставив I, имеем r = R(E/U-1).

Этот же расчет можно выполнить и графическим путем. Для полной цепи, показанной на рис. 4, построим зависимость тока через нагрузку от напряжения на ней при условии, что сопротивление изменяется от 0 до бесконечности. Когда сопротивление равно 0, ток максимвлен и равен lK3, напряжение же равно 0 - получаем точку а. Увеличим сопротивление до бесконечности (отключим его) - напряжение возрастет до Е - получаем точку b. Двух точек достаточно, чтобы провести через них прямую a-b - она называется нагрузочной характеристикой (утолщенная линия).

Включив теперь некоторое сопротивление R, измерив напряжение на нем U и вычислив ток I, получаем точку с. Ее легко найти и графически, построив в тех же координатах график l(U) для данного сопротивления R такой же, как на рис. 3,в (тонкая линия на рис. 5). Пересечение двух прямых линий и дает точку с.

Этот непростой закон Ома

В вышеприведенном расчете мы, собственно, и нашли точки b и с, измерив ЭДС и напряжение на нагрузке Проведя через них прямую, находим и точку а на пересечении с вертикальной осью (Iкз), а отсюда и внутреннее сопротивление r.

Теперь попытаемся ответить на вопрос, какая мощность Р выделяется в нагрузке? Как известно, Р = U·I. Вольты, умноженные на амперы, дают ватты. Если же ток измеряется в миллиамперах, а напряжение в вольтах, то мощность получается в милливаттах. По этой формуле легко найти мощность, рассеиваемую на резисторах. Например, если к резистору сопротивлением 1,2 кОм подведено напряжение 12 В, то ток составит 10 мА, а рассеиваемая мощность - 120 мВт. Графически мощность равна площади прямоугольника, построенного на осях координат и касающийся вершиной точки с (он заштрихован на рис. 5).

Сопротивление нагрузки можно подобрать таким, чтобы оказаться в очень интересной точке d, где U = Е/2 и I = lK3/2. В этих условиях сопротивление нагрузки равно внутреннему сопротивлению источника, т. е. R = г, а площадь прямоугольника, соответствующая рассеиваемой в нагрузке мощности Р, окажется максимальной. Попробуйте сами для развлечения доказать это положение либо алгебраически - нахождением максимума функции, либо доказательством геометрической теоремы. Условие R = r называется условием согласования, а нагрузка - согласованной. При этом в ней выделяется наибольшая мощность.

Действительно, при больших сопротивлениях нагрузки падает ток, в пределе до нуля, а напряжение не может превзойти ЭДС. Следовательно, мощность в нагрузке стремится к нулю. Менее очевиден другой крайний случай, когда сопротивление нагрузки стремится к нулю Тогда ток возрастает до lK3, но напряжение U стремится к нулю, а значит, падает и мощность в нагрузке. Надо заметить, что мощность в этом случае все-таки рассеивается, но совсем не там, где надо, - на внутреннем сопротивлении источника. Неоднократно замечено, что замкнутый накоротко гальванический элемент разогревается, одновременно быстро расходуя свою емкость.

Последний вопрос для сегодняшнего обсуждения - каков КПД цепи, показанной на рис. 4? По определению, КПД равен отношению мощности, выделяемой в нагрузке, к полной мощности, расходуемой в цепи. Последняя равна Е·1, и КПД = U·l/E·l = U/E. Отсюда видно, что КПД близок к единице лишь при больших сопротивлениях нагрузки, при работе с малыми токами, когда U почти равно Е, а падение напряжения на внутреннем сопротивлении источника мало. При согласовании КПД = 0,5 (50 %) и половина полной мощности тратится внутри источника, а другая половина - в нагрузке. В режимах, близких к короткому замыканию, КПД совсем мал. Это одна из причин, по которой гальванические элементы выгоднее разряжать малым током.

А теперь очередное "домашнее задание". Вас завезли на остров, спускается ночь, следующий рейс катера задержался и ему надо подать световой сигнал. Среди экспедиционного снаряжения вы нашли фонарь с полуразряженной батареей, мультиметр и три лампочки: 12 Вх0,1 А, 6 Вх0,2 А и 3 Вх0,4 А. Измерения параметров батареи показали ее ЭДС 12 В и ток короткого замыкания 0,4 А. Какую выбрать лампочку, чтобы свет был как можно ярче? (Заметьте, что схема фонаря соответствует рис. 4, не показан только выключатель.).

Автор: В.Поляков, г.Москва

Смотрите другие статьи раздела Начинающему радиолюбителю.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Использование Apple Vision Pro во время операций 16.03.2024

Медицинская команда больницы Кромвеля в Лондоне впервые применила Apple Vision Pro в ходе двух операций на позвоночнике. Это событие подтверждает потенциал гарнитуры в качестве медицинского инструмента, изменяющего подход к хирургической практике. Хотя сами врачи не использовали Vision Pro, операционная медсестра работала с виртуальной реальностью, используя очки во время подготовки и выполнения процедур. Гарнитура позволила просматривать виртуальные экраны в операционной, выбирать инструменты и следить за ходом операции. Программное обеспечение, разработанное компанией eXeX, специализирующейся на создании приложений на основе искусственного интеллекта для хирургии, существенно улучшило процесс оказания медицинской помощи пациентам. Использование Apple Vision Pro открывает новые возможности для разработки приложений в сфере здравоохранения, таких как клиническое образование, планирование операций, обучение и медицинская визуализация. Внедрение Apple Vision Pro в медицинскую пр ...>>

Хранение углерода в Северное море 16.03.2024

Министр энергетики Норвегии Терье Осланд объявил о запуске проекта Longship, нацеленного на создание центрального хранилища углекислого газа в Северном море. Этот амбициозный проект оценивается в $2,6 млрд и направлен на применение технологии CCS (углеродного захвата и хранения) для смягчения воздействия климатических изменений. Норвегия уже имеет опыт в области CCS благодаря успешным проектам Sleipner и Snohvit, и сейчас стремится увеличить объем углерода, запечатываемого под морским дном. План Longship предусматривает создание мощности по захвату и хранению 1,5 млн. тонн углерода ежегодно в течение 25 лет. Несмотря на позитивные перспективы, существуют опасения по поводу долгосрочных последствий такого хранения. Однако сторонники проекта утверждают, что морское хранение углерода имеет ряд преимуществ, включая минимальное воздействие на окружающую среду. Проект Longship осуществляется при участии компаний Equinor, Shell и TotalEnergies через совместное предприятие Northern Li ...>>

Выращены мини-органы из амниотической жидкости человека 15.03.2024

Международная команда ученых под руководством профессора Фань Сюлиня из Университета Чжэцзян разработала уникальный способ выращивания мини-органов из клеток, обнаруженных в амниотической жидкости человека. Этот значительный прорыв в медицине может привести к улучшению диагностики и лечения врожденных заболеваний. Органоиды, представляющие собой трехмерные клеточные структуры, имитирующие органы в меньшем масштабе, были выращены из клеток легких, почек и тонкого кишечника, найденных в амниотической жидкости. Этот метод открывает новые возможности для изучения различных состояний плода и может стать ключом к ранней диагностике и лечению врожденных дефектов. Хотя пока не проводились попытки использования этого метода в лечении, ученые надеются, что их исследования в будущем помогут бороться с серьезными врожденными заболеваниями, которые затрагивают миллионы новорожденных ежегодно. Этот прорыв может изменить практику медицинских вмешательств, позволяя диагностировать и лечить врожд ...>>

Случайная новость из Архива

2000 атомов в двух местах одновременно 02.10.2019

Группа ученых из Венского университета и университета Базеля произвела проверку принципа квантовой суперпозиции в самом крупном масштабе за всю историю существования науки. Огромные сложные молекулы, состоящие из двух тысяч атомов, были помещены в состояние суперпозиции, находясь, при этом, в двух местах одновременно, согласно причудливым законам квантовой механики. Данное достижение является весомым подтверждением проявления суперпозиции, которая является "сердцем" всех квантовых технологий, что, в свою очередь, служит серьезным ограничением для дальнейшего развития множества альтернативных теорий.

Напомним нашим читателям, что принцип суперпозиции является одним из основных "столпов" квантовой механики, который является следствием одного из фундаментальных уравнений, уравнения Шредингера. Это уравнение описывает квантовые частицы их волновыми функциями, которые очень похожи на функции, описывающие концентрические волны на поверхности воды. Однако, в отличие от волн на поверхности воды, которые являются проявлением коллективного поведения и взаимодействия множества молекул, квантовые волны могут быть связаны с отдельными частицами.

Одним из примеров волновой природы квантовых частиц является эксперимент с двумя щелями, расположенными очень близко друг к другу, через которые одновременно проходит "волна" одной частицы. Пройдя сквозь щели, волны складываются друг с другом и частица-волна снова приобретает свою целостность. Этот эффект уже был продемонстрирован по отношению к фотонам, электронам, нейтронам и даже отдельным атомам.

В своих экспериментах ученые использовали самую большую из доступных молекул C707H260F908N16S53Zn4, которая состоит в сумме из 40 тысяч протонов, нейтронов и электронов, и обладает массой, равной 25 тысячам атомных масс. Для синтеза таких молекул были использованы специальные методы, которые сделали эти молекулы достаточно стабильными, чтобы из них можно было сформировать луч, направляемый внутрь камеры со сверхглубоким вакуумом. Проверка квантовой природы таких массивных частиц потребовало использования интерферометра, длиной два метра, который имелся в распоряжении Венского университета.

Согласно одной из альтернативных теорий, которая служит своего рода мостом между классической физикой и квантовой механикой, длительность преобладания волновой функции частицы уменьшается прямо пропорционально массе этой частицы. Это, в свою очередь, ограничивает и время пребывания частицы в состоянии квантовой суперпозиции.

В своих экспериментах ученые выяснили, что огромные молекулы находились в состоянии суперпозиции на протяжении 7 миллисекунд времени, достаточно долго для того, чтобы не оставить камня на камне от указанной выше теории и от ряда других альтернативных теорий и моделей.

Другие интересные новости:

▪ Крошечный сетевой процессор NXP Semiconductors QorIQ LS1012A

▪ Двуязычность оздоравливает мозг и сохраняет умственное здоровье

▪ Портативный накопитель 4 ТБ от Seagate

▪ MAX17558 - двухканальный 60V контроллер понижающего DC-DC

▪ Франция избавится от угольных электростанций

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Крылатые слова, фразеологизмы. Подборка статей

▪ статья Шалаш вашего сада. Советы домашнему мастеру

▪ статья Почему зрители некоторых театров не аплодируют до самого конца оперы Вагнера Парсифаль? Подробный ответ

▪ статья Работа в дизельной. Типовая инструкция по охране труда

▪ статья Экономичный таймер. Энциклопедия радиоэлектроники и электротехники

▪ статья Чудо-телефон. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024