Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Этот непростой закон Ома. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Начинающему радиолюбителю

Комментарии к статье Комментарии к статье

Нет сомнения, что всем известен закон Ома для участка цепи, показанной на рис. 3,а: U = IR, где U - падение напряжения на участке; I - ток в цепи; R - сопротивление этого участка цепи. Ошибаться в законе Ома стыдно, но если вы еще не запомнили эту формулу, воспользуйтесь рис. 3,б. Достаточно закрыть искомую величину пальцем, чтобы получить ответ, что на что надо умножать или делить. Рекомендуется пользоваться системой единиц СИ, где напряжение выражается в вольтах, сопротивление - в омах, ток - в амперах. Однако при расчетах радиотехнических цепей бывает удобно взять ток в миллиамперах и сопротивление в килоомах - тогда множители 10-3 и 103 сократятся и напряжение по-прежнему получится в вольтах.

Этот непростой закон Ома

Выразим ток I = U/R. Зависимость тока от напряжения прямо пропорционaльная, на графике l(U) она отображается прямой линией (рис. 3,в). Эту зависимость часто называют линейной.

Итак, берем батарею от карманного фонаря на 4,5 В и подключаем к ней последовательно соединенные резистор сопротивлением 1 Ом и амперметр (его всегда включают последовательно с нагрузкой). Вместо ожидаемых 4,5 А получаем значительно меньше! В чем дело, неужели закон Ома не работает? Придется исследовать это явление и подключить параллельно резистору вольтметр. Он покажет напряжение, меньшее 4,5 В и равное U = I·R. Где же "падает" остальное напряжение? На внутреннем сопротивлении батареи, которое мы в предыдущем расчете и не учли. Здесь надо пользоваться законом Ома для полной цепи: I = E/(r + R), где Е - электродвижущая сила батареи (ЭДС, именно она указана на упаковке, а вовсе не напряжение); r - внутреннее сопротивление. Эти два параметра полностью характеризуют источник тока. Схема эксперимента и порядок включения приборов показаны на рис. 4.

Этот непростой закон Ома

Посмотрим, как зависят ток и напряжение на нагрузке от ее сопротивления R. Напряжение на нагрузке U = l·R = ER/(r + R). Если сопротивление нагрузки увеличивать до бесконечности, ток будет стремиться к нулю, а напряжение - к ЭДС. Узнать ЭДС легко, надо просто подсоединить вольтметр (без нагрузки) к выводам батареи. При этом предполагается, что вольтметр "хороший" - высокоомный, т. е. потребляющий пренебрежимо малый ток. Если же нет, то "плохой" вольтметр покажет напряжение, меньшее ЭДС на величину Iв·r где Iв - ток, потребляемый вольтметром.

Устремим теперь сопротивление нагрузки к нулю, тогда ток в цепи будет равен току короткого замыкания Iкз = Е/r. Теперь амперметр, показанный на рис. 4, должен быть "хорошим", т. е. обладающим исключительно малым собственным сопротивлением rа. В противном случае будет измерен не Iкз, а меньший ток, равный Е/(r + rа). Измерять ток короткого замыкания с помощью амперметра можно только у самых маломощных элементов и батарей (тогда он невелик, а очень кратковременное замыкание выводов батарее не вредит). Для многих аккумуляторов Iкз может достигать сотен и тысяч ампер - такой ток плавит медные провода и железные гвозди и уж наверняка испортит ваш амперметр.

К счастью, проводить подобный эксперимент совсем необязательно, а внутреннее сопротивление легко найти расчетным путем. Если высокоомным вольтметром измерить ЭДС, а затем напряжение U на известной нагрузке R, то из закона Ома для участка цепи легко найти I = U/R. Можно и измерить ток, тогда даже не обязательно знать сопротивление. Теперь преобразуем формулу закона Ома для полной цепи: r = Е/I - R. Подставив I, имеем r = R(E/U-1).

Этот же расчет можно выполнить и графическим путем. Для полной цепи, показанной на рис. 4, построим зависимость тока через нагрузку от напряжения на ней при условии, что сопротивление изменяется от 0 до бесконечности. Когда сопротивление равно 0, ток максимвлен и равен lK3, напряжение же равно 0 - получаем точку а. Увеличим сопротивление до бесконечности (отключим его) - напряжение возрастет до Е - получаем точку b. Двух точек достаточно, чтобы провести через них прямую a-b - она называется нагрузочной характеристикой (утолщенная линия).

Включив теперь некоторое сопротивление R, измерив напряжение на нем U и вычислив ток I, получаем точку с. Ее легко найти и графически, построив в тех же координатах график l(U) для данного сопротивления R такой же, как на рис. 3,в (тонкая линия на рис. 5). Пересечение двух прямых линий и дает точку с.

Этот непростой закон Ома

В вышеприведенном расчете мы, собственно, и нашли точки b и с, измерив ЭДС и напряжение на нагрузке Проведя через них прямую, находим и точку а на пересечении с вертикальной осью (Iкз), а отсюда и внутреннее сопротивление r.

Теперь попытаемся ответить на вопрос, какая мощность Р выделяется в нагрузке? Как известно, Р = U·I. Вольты, умноженные на амперы, дают ватты. Если же ток измеряется в миллиамперах, а напряжение в вольтах, то мощность получается в милливаттах. По этой формуле легко найти мощность, рассеиваемую на резисторах. Например, если к резистору сопротивлением 1,2 кОм подведено напряжение 12 В, то ток составит 10 мА, а рассеиваемая мощность - 120 мВт. Графически мощность равна площади прямоугольника, построенного на осях координат и касающийся вершиной точки с (он заштрихован на рис. 5).

Сопротивление нагрузки можно подобрать таким, чтобы оказаться в очень интересной точке d, где U = Е/2 и I = lK3/2. В этих условиях сопротивление нагрузки равно внутреннему сопротивлению источника, т. е. R = г, а площадь прямоугольника, соответствующая рассеиваемой в нагрузке мощности Р, окажется максимальной. Попробуйте сами для развлечения доказать это положение либо алгебраически - нахождением максимума функции, либо доказательством геометрической теоремы. Условие R = r называется условием согласования, а нагрузка - согласованной. При этом в ней выделяется наибольшая мощность.

Действительно, при больших сопротивлениях нагрузки падает ток, в пределе до нуля, а напряжение не может превзойти ЭДС. Следовательно, мощность в нагрузке стремится к нулю. Менее очевиден другой крайний случай, когда сопротивление нагрузки стремится к нулю Тогда ток возрастает до lK3, но напряжение U стремится к нулю, а значит, падает и мощность в нагрузке. Надо заметить, что мощность в этом случае все-таки рассеивается, но совсем не там, где надо, - на внутреннем сопротивлении источника. Неоднократно замечено, что замкнутый накоротко гальванический элемент разогревается, одновременно быстро расходуя свою емкость.

Последний вопрос для сегодняшнего обсуждения - каков КПД цепи, показанной на рис. 4? По определению, КПД равен отношению мощности, выделяемой в нагрузке, к полной мощности, расходуемой в цепи. Последняя равна Е·1, и КПД = U·l/E·l = U/E. Отсюда видно, что КПД близок к единице лишь при больших сопротивлениях нагрузки, при работе с малыми токами, когда U почти равно Е, а падение напряжения на внутреннем сопротивлении источника мало. При согласовании КПД = 0,5 (50 %) и половина полной мощности тратится внутри источника, а другая половина - в нагрузке. В режимах, близких к короткому замыканию, КПД совсем мал. Это одна из причин, по которой гальванические элементы выгоднее разряжать малым током.

А теперь очередное "домашнее задание". Вас завезли на остров, спускается ночь, следующий рейс катера задержался и ему надо подать световой сигнал. Среди экспедиционного снаряжения вы нашли фонарь с полуразряженной батареей, мультиметр и три лампочки: 12 Вх0,1 А, 6 Вх0,2 А и 3 Вх0,4 А. Измерения параметров батареи показали ее ЭДС 12 В и ток короткого замыкания 0,4 А. Какую выбрать лампочку, чтобы свет был как можно ярче? (Заметьте, что схема фонаря соответствует рис. 4, не показан только выключатель.).

Автор: В.Поляков, г.Москва

Смотрите другие статьи раздела Начинающему радиолюбителю.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Токсичность интернета преувеличена 07.01.2026

Социальные сети нередко воспринимаются как арена постоянной агрессии, оскорблений и распространения фейковой информации. Новое исследование Стэнфордского университета показывает, что реальность значительно отличается от популярного представления: интернет гораздо менее токсичен, чем многие пользователи считают. Ученые опросили более тысячи американцев, попросив их оценить долю пользователей соцсетей, которые ведут себя агрессивно или распространяют ненависть. Оказалось, что впечатления людей сильно преувеличивают масштабы проблемы. Например, респонденты считали, что почти половина пользователей Reddit хотя бы раз оставляла оскорбительные комментарии, тогда как фактические данные платформы показывают, что таких людей не более 3%. Аналогичная ситуация наблюдается с дезинформацией. Опрос показал, что большинство участников считали почти половину аудитории Facebook распространителями фейковых новостей, однако статистика говорит об обратном: фактическая доля таких пользователей состав ...>>

Процессоры Ryzen AI 400 07.01.2026

Современные вычисления все больше ориентируются на интеграцию искусственного интеллекта и высокую производительность в компактных устройствах, таких как ноутбуки и мини-ПК. Новая линейка процессоров AMD Ryzen AI 400 демонстрирует, как разработчики объединяют мощные центральные ядра, графику и нейросетевые ускорители в одном чипе, чтобы удовлетворять растущие потребности пользователей в играх, контенте и ИИ-приложениях. AMD представила процессоры серии Gorgon Point, которые включают до 12 ядер Zen 5 и до 24 потоков вычислений. Чипы поддерживают интегрированную графику RDNA 3.5, обеспечивают максимальную тактовую частоту до 5,2 ГГц и имеют энергопотребление от 15 Вт до 54 Вт. Особое внимание уделено NPU, способному обрабатывать до 60 триллионов операций в секунду (TOPS), что делает эти процессоры эффективными для задач с искусственным интеллектом. Конструкция Ryzen AI 400 сочетает ядра Zen 5 и Zen 5c, обеспечивая высокую гибкость и производительность. Несмотря на то, что архитектур ...>>

Женщины лучше распознают признаки болезни по лицу 06.01.2026

Способность распознавать, что кто-то нездоров, часто проявляется интуитивно: бледная кожа, опущенные веки, уставшее выражение лица могут сигнализировать о недомогании. Новое исследование международной группы ученых показало, что женщины в среднем точнее мужчин улавливают такие тонкие невербальные признаки болезни, что может иметь эволюционные и социальные объяснения. В отличие от предыдущих работ, где использовались отредактированные фотографии или имитация больных лиц, ученые решили проверить, насколько люди способны распознавать естественные признаки недомогания. Такой подход позволил оценить реальную чувствительность к изменениям в лицах, возникающим при болезни. В исследовании приняли участие 280 студентов, поровну мужчин и женщин. Участникам предложили оценить 24 фотографии, на которых изображены люди как в здоровом состоянии, так и во время болезни. Это дало возможность сравнить восприятие естественных признаков недомогания в реальных лицах. Для анализа состояния каждого ...>>

Случайная новость из Архива

Сотовый как пульт дистанционного управления 20.08.2002

Израильская компания ControllD разработала способ использования сотового телефона в качестве пульта дистанционного управления.

Для того чтобы, например, открыть ворота в гараж, абоненту достаточно набрать определенный телефонный номер. Звонок поступает на устройство управления, оборудованное АОНом. Таким образом, обрабатываются только сигналы от авторизованных пользователей.

Хотя изначально система разрабатывалась как узкоспециализированная, очевидно, что исполнительное устройство может быть подключено не только к воротам, но и выполнять другие функции. Набирая разные номера, с помощью одного телефона можно управлять большим количеством таких устройств.

Другие интересные новости:

▪ Охлаждение лазером

▪ В больницу - без галстука

▪ Ночное молоко целебно

▪ Гравитационный аккумулятор

▪ Лондон оказался под угрозой затопления

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Электробезопасность, пожаробезопасность. Подборка статей

▪ статья Лейкопластырь. История изобретения и производства

▪ статья Как прорастают семена? Подробный ответ

▪ статья Росичка стелющаяся. Легенды, выращивание, способы применения

▪ статья Блок индикации БСК-10. Энциклопедия радиоэлектроники и электротехники

▪ статья Тонкомпенсированный регулятор громкости. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2026