Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Новые возможности микросхемных стабилизаторов напряжения. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Начинающему радиолюбителю

Комментарии к статье Комментарии к статье

Микросхемные стабилизаторы все чаще можно встретить в радиолюбительских разработках. Но возможности их значительно шире по сравнению с используемыми радиолюбителями. В одних случаях стабилизатор может стать, к примеру, основой усилителя ЗЧ, акустической сирены или модулятора, в других - основой мощного стабилизатора, встраиваемого в сетевой адаптер. Об этом рассказывается в предлагаемых статьях.

НЕОБЫЧНОЕ ПРИМЕНЕНИЕ МИКРОСХЕМЫ КР142ЕН12

Интегральные стабилизаторы напряжения серий КР142, КР1157, КР1168 и аналогичные, описанные в статье С. Бирюкова "Микросхемные стабилизаторы напряжения широкого применения" ("Радио", 1999. № 2, с. 69 - 71), с успехом используются в конструкциях линейных стабилизаторов напряжения и блоков питания. Учитывая особенности ряда таких ИМС. можно расширить область их применения. Это, в частности, от носится к регулируемым стабилизаторам КР142ЕН12А, КР142ЕН12Б.

Усилитель постоянного или переменного тока. Как известно, для изменения выходного напряжения микросхемы КР142ЕН12А (КР142ЕН12Б) на ее управляющий вывод надо подавать регулируемое постоянное напряжение. Поскольку ток управляющего вывода составляет 50... 100 мкА, а выходной ток достигает полугора ампер, можно говорить о том, что коэффициент усиления микросхемы по току составляет несколько десятков тысяч и она способна выполнять функции усилителя тока. Схема такого усилителя приведена на рис. 1. По своим характеристикам он аналогичен известному эмиттерному повторителю.

Новые возможности микросхемных стабилизаторов напряжения

Если нужен усилитель постоянного тока, входное напряжение подают непосредственно на управляющий вывод микросхемы. При этом на ее выходе установится напряжение на 1.2 В больше. Максимальное входное напряжение должно быть на 3...3,5 В меньше напряжения питания.

Нагрузку R (лампа накаливания, электромагнит и т. д.) подключают непосредственно к выходу микросхемы. Максимальный ток нагрузки определяется максимальным током микросхемы. Конденсатор C3 устанавливают в случае самовозбуждения устройства.

Для реализации усилителя переменного тока придется ввести конденсаторы С2, C3. Подбором резистора R2 устанавливают на выходе постоянное напряжение, равное примерно половине напряжения питания. Номинал резистора R` выбирают таким, чтобы через него протекал ток, примерно в два раза больший максимального тока нагрузки R.

Конденсатор С4 должен быть такой емкости, чтобы он пропускал токи самой низкой частоты усиливаемого сигнала. Эксперименты показали, что усилитель обладает широкой полосой пропускания - до 200 кГц. Кроме того, микросхема устойчиво работала на активную нагрузку без конденсатора C3.

Модулятор. Ток через управляющий вывод микросхемы относительно стабилен, поэтому подключение к нему каскада на транзисторе позволит получить усилитель переменного напряжения с большим коэффициентом усиления. В итоге удастся построить сравнительно простой модулятор (рис. 2) для малогабаритной переносной AM радиостанции. Усиление его таково, что при использовании электретного микрофона ВМ1 средней чувствительности амплитуда переменного напряжения на выходе микросхемы составляет несколько вольт. А этого достаточно для модуляции выходного каскада передатчика.

Новые возможности микросхемных стабилизаторов напряжения

Подбором резистора R3 устанавливают на выходе микросхемы постоянное напряжение, равное половине питающего. Транзистор должен быть с коэффициентом передачи тока базы не менее 200.

Усилитель 3Ч. На основе описанной выше конструкции можно собрать УЗЧ (рис. 3). Здесь динамическую головку ВА1 подключают непосредственно к выходу микросхемы, и через нее постоянно протекает ток.

Новые возможности микросхемных стабилизаторов напряжения

Чувствительность усилителя достаточно большая - при подаче на вход сигнала напряжением 8 мВ выходное напряжение составляет 1 В. К выходу усилителя следует подключать динамическую головку со звуковой катушкой сопротивлением 10 - 16 Ом и более (или несколько низкоомных, соединенных последовательно).

Питающее напряжение может быть и больше - 9...12 В, но тогда нужно, чтобы динамическая головка была соответствующей мощности. Кроме того, допустимо подавать нестабилизированное напряжение, поскольку эффект стабилизации у микросхемы сохраняется. В случае необходимости устанавливают резистор R' и разделительный конденсатор С4, как показано на рис.1.

Мощная сирена. Ее схема показана на рис. 4. На двух транзисторах и микросхеме собран генератор прямоугольных импульсов звуковой частоты, а в качестве излучателя используется мощная динамическая головка ВА1. Ее выбирают исходя из получения максимальной мощности при имеющемся напряжении питания. При этом следует учитывать, что максимальный ток через микросхему не должен превышать 1,5 А для КР142ЕН12А и 1 А для КР142ЕН12Б.

Новые возможности микросхемных стабилизаторов напряжения

Транзистор VT1 должен иметь коэффициент передачи тока не менее 30, а VT2 - не менее 100.

Налаживание сирены сводится к установке устойчивой генерации подстроечным резистором R4. Частоту генерации изменяют подбором конденсатора С2.

Импульсный регулятор. Благодаря способности микросхемы работать в импульсном режиме, на ней можно собрать импульсный регулятор скорости вращения двигателя постоянного тока или яркости лампы накаливания (рис. 5).

Новые возможности микросхемных стабилизаторов напряжения

На элементах DD1.1 и DD1.2 собран задающий генератор, работающий на частоте около 1 кГц. Переменным резистором R1 изменяют скважность генерируемых импульсов (при этом генерируемая частота изменяется незначительно), которые поступают на буферные элементы DD1.3. DD1.4, а с их выходов - на управляющий вывод микросхемы DA1. В итоге на выходе микросхемы формируются мощные импульсы напряжения, длительность которых можно изменять резистором R1. Чем больше длительность импульсов, тем быстрее будет вращение оси электродвигателя М1 или больше яркость лампы накаливания EL1.

Диод VD3 защищает микросхему DA1 от возможных выбросов напряжения при работе с электродвигателем. В случае использования регулятора только с лампой накаливания диод не нужен.

Питающее напряжение в этом устройстве должно быть на 2...2,5 В больше максимального напряжения на электродвигателе или лампе накаливания.

Регулятор использовался совместно с малогабаритным электродвигателем ДПМ 30-Н1-09 и блоком питания напряжением 10... 11 В. Скорость вращения вала двигателя удавалось изменять от нескольких оборотов в секунду до максимальной.

Во всех описанных устройствах допустимо использовать полярные конденсаторы серий К50, К52. К53, а неполярные - серий КЛС, К10-17, К73. Подстроечные или переменные резисторы - СПО, СПЗ, СП4. Если на микросхеме будет рассеиваться мощность более 0,5 Вт, ее необходимо размещать на теплоотводе.

МАЛОМОЩНЫЕ МИКРОСХЕМЫ СТАБИЛИЗАТОРОВ НАПРЯЖЕНИЯ В БЛОКАХ ПИТАНИЯ

При конструировании стабилизированных блоков питания различной аппаратуры, как правило, используют микросхемные стабилизаторы напряжения. Большая номенклатура таких микросхем [1] предоставляет конструкторам широкую возможность их выбора для создания стабилизатора с требуемыми параметрами. В некоторых случаях, однако, для построения относительно мощных стабилизаторов вполне применимы маломощные микросхемы. Примером в этом отношении может служить построение стабилизатора напряжения, встраиваемого в сетевой адаптер.

В большинстве случаев, как известно, такие адаптеры, особенно импортные, обеспечивают выходной ток до 0.5 А и не содержат стабилизатора напряжения [2]. Если для повышения "качества" выпрямленного напряжения необходим стабилизатор, можно использовать микросхемы ИМС, указанные в [1].

Сегодня наиболее доступны микросхемы серии КР142. Для получения выходного напряжения 9 В обычно выбирают КР142ЕН8А. КР142ЕН8Г. Однако они обеспечивают ток нагрузки до 1...1.5 А при еще большем токе короткого замыкания (КЗ). Из-за этого при возникновении аварийной ситуации могут выйти из строя трансформатор и выпрямительные диоды адаптера.

Чтобы избежать этого, нужен стабилизатор с током нагрузки до 0,5 А и током КЗ не более 0,6 А. Но найти микросхемы с такими параметрами и с выходным напряжением 9 В затруднительно.

Выход из положения есть. Нужно использовать маломощную микросхему и "умощнить" ее с помощью транзистора (рис. 1).

Новые возможности микросхемных стабилизаторов напряжения

В таком устройстве при токе нагрузки более 20 мА падения напряжения на резисторе R1 окажется достаточно для открывания транзистора VT1. Ток потечет "в обход" DA1, выходное напряжение будет определяться ее параметрами, а ток нагрузки может превысить допустимый выходной ток микросхемы во много раз. Правда, ток КЗ достигнет 1... 1,5 А, что чревато вышеуказанными последствиями.

Ограничить ток КЗ нетрудно введением еще одного транзистора (VT2 на рис. 2). Тогда при токе нагрузки до 20 мА по-прежнему будет работать только DA1, а транзисторы окажутся закрытыми. Когда ток превысит указанное значение, откроется транзистор VT1 и ток потечет через него. Как только ток достигнет значения 400...500 мА либо в цепи нагрузки возникнет КЗ, на резисторе R1 появится такое напряжение, которое откроет транзистор VT2. Теперь оба транзистора начнут работать в режиме стабилизатора тока.

Новые возможности микросхемных стабилизаторов напряжения

Резистором R1 задают ориентировочное значение тока стабилизации: lcт = 0.6/R1. При этом ток КЗ составит: lкз = lcе + lкзмс где lкзмс - ток К3 микросхемы.

В обоих устройствах транзисторы VT1 - любые из серий КТ814, КТ816. Транзистор VT2 должен быть с малым напряжением насыщения коллектор-эмиттер, поэтому желательно применить, кроме указанного на схеме, транзисторы КТ208А-КТ208М, КТ209А-КТ209М, КТ3107А-КТ3107И, КТ3108А-КТ3108В. Конденсатор С1 - конденсатор фильтра адаптера.

Литература

  1. Бирюков С. Микросхемные стабилизаторы напряжения широкого применения. - Радио. 1999. № 2, с. 69-71.
  2. Бирюков С. Сетевые адаптеры. - Радио. 1998. № 6. с. 66. 67.

Автор: И.Нечаев

Смотрите другие статьи раздела Начинающему радиолюбителю.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Ранняя Вселенная не была ледяной 28.11.2025

Понимание того, как формировались первые структуры во Вселенной, требует взгляда в эпохи, в которых не существовало ни звезд, ни галактик, ни привычных нам источников света. Научные группы по всему миру пытаются восстановить картину тех времен при помощи слабейших радиосигналов, оставшихся от водорода, который наполнял космос вскоре после Большого взрыва. Новые результаты, полученные на радиотелескопе Murchison Widefield Array в Австралии, неожиданным образом меняют представление об этих ранних этапах. Сразу после Большого взрыва, произошедшего около 13,8 миллиарда лет назад, пространство стремительно расширялось и остывало. Через несколько сотен тысяч лет образовался нейтральный водород, и началась так называемая эпоха тьмы, когда Вселенная была лишена источников излучения. Лишь значительно позже гравитация собрала газ в плотные области, где зародились первые звезды и ранние черные дыры, а их интенсивное излучение привело к реионизации водорода и окончательному появлению света. ...>>

Устройство идеальной очистки воздуха 28.11.2025

Качество воздуха в закрытых помещениях давно стало важнейшим фактором здоровья, особенно в городах, где люди проводят подавляющую часть времени внутри зданий. В последние годы исследователи уделяют все больше внимания именно тем технологиям, которые способны задерживать или разрушать вредоносные частицы до того, как они попадут в дыхательные пути человека. Одним из таких новаторских направлений стала разработка инженеров Университета Британской Колумбии в Оканагане, которые предложили принципиально иной подход к очистке воздуха в присутствии людей. По словам профессора Школы инженерии доктора Санни Ли, традиционные персонализированные вентиляционные системы действительно могут улучшать качество воздуха вокруг пользователя, однако их принцип работы имеет ряд ограничений. Человек вынужден находиться в строго определенной зоне, а одновременное использование одной системы несколькими людьми снижает эффективность. Кроме того, непрерывный поток сухого очищенного воздуха способен вызывать ...>>

Ощущение текстуры через экран гаджета 27.11.2025

Гаджеты научились передавать изображение и звук с впечатляющей реалистичностью, но тактильные ощущения по-прежнему остаются недоступными для полноценной цифровой симуляции. Именно поэтому инженеры и исследователи во всем мире стремятся создать технологии, которые позволят "почувствовать" виртуальный объект так же естественно, как и настоящий. Новая разработка специалистов Северо-Западного университета США стала одним из самых заметных шагов в этом направлении. Возглавлявшая исследование аспирантка Сильвия Тан (Sylvia Tan) подчеркивает, что прикосновение остается последним фундаментальным чувственным каналом, для которого пока нет зрелого цифрового аналога. По ее словам, если визуальные и звуковые интерфейсы давно обеспечивают высокую степень реалистичности, то осязание лишь начинает приближаться к этому уровню. В недавней публикации в журнале Science Advances Тан отмечает, что новая технология способна изменить само представление о взаимодействии человека с устройствами. Разработ ...>>

Случайная новость из Архива

Самые быстрые челюсти в мире 17.12.2018

Ученые определили нового претендента на звание самого быстрого животного на Земле. Это - муравей-дракула (Mystrium camillae).

Маленькое тропическое насекомое может щелкать своими жвалами (верхними челюстями) со скоростью до 90 метров в секунду. Эту особенность муравьи используют, чтобы атаковать, оглушить и убить свою добычу, а затем скормить личинкам. Как правило, добычей становятся многоножки или термиты.

Муравьи-дракулы в основном встречаются в тропиках Африки и Азии. Они живут большими колониями под землей или в стволах деревьев, поэтому их редко можно увидеть.

Свое вампирское прозвище они получили из-за необычного способа питания: взрослые особи не могут обрабатывать твердую пищу, поэтому они скармливают добычу своим личинкам, а затем прокусывают в них отверстия и пьют их "кровь" (гемолимфу). Личинкам это вреда не приносит.

Другие интересные новости:

▪ Одноразовая посуда GaeaStar разложится на пыль

▪ Медицинские протезы от Lamborghini

▪ Разработан прозрачный и бесшумный роботизированный угорь

▪ Самый холодный кубометр во Вселенной

▪ Модули памяти DDR3 Ultra Low Profile (ULP) Planar Mini-UDIMM 8 ГБ

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Типовые инструкции по охране труда (ТОИ). Подборка статей

▪ статья Асфальтовые (каменные) джунгли. Крылатое выражение

▪ статья Как свечи использовали в качестве часов и будильника? Подробный ответ

▪ статья Правовые основы охраны труда

▪ статья Электронная система зажигания для автомобильного отопителя (ЗАЗ). Энциклопедия радиоэлектроники и электротехники

▪ статья Цифровой FM стерео приемник 60-110 МГц с микропроцессорным управлением. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025