Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Конструкции А.Партина. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Начинающему радиолюбителю

Комментарии к статье Комментарии к статье

Переговорное устройство (рис. 1)

Конструкции А.Партина

Основа устройства - усилитель звуковой частоты, выполненный на двух транзисторах, включенных по схеме с общим эмиттером. Чтобы можно было точнее установить оптимальный режим их работы, в цепи баз транзисторов включены переменные резисторы (R1 и R4).

Переговорное устройство снабжено двумя капсюлями от головных телефонов ТОН-2 - BF1 и BF2. Первый из них может находиться вблизи усилителя, второй вместе с кнопочным переключателем SB2 удален на нужное расстояние и соединен с усилителем тремя проводами.

В показанном на схеме положении подвижных контактов кнопочных переключателей SB1 и SB2 капсюли установлены на прием сообщений. Если абонент, обладающий капсюлем BF1, нажмет на кнопку переключателя SB1, капсюль BF1 окажется подключенным ко входу усилителя и разговор будет услышан обладателем капсюля BF2. Аналогичным способом второй абонент сможет передать сообщение первому, если нажмет на кнопку SB2 (кнопка SB1 при этом должна быть отпущена).

Налаживать усилитель проще всего покаскадно, начиная с каскада на транзисторе VT2. Для этого левый по схеме вывод конденсатора С2 отсоединяют от коллектора транзистора VT1 и включают между этим выводом и общим проводом капсюль BF1. Попросив кого-нибудь произнести несколько фраз перед капсюлем BF1, прослушивают звук в капсюле BF2. Перемещением движка резистора R4 добиваются при этом наибольшей громкости звука и наименьших искажений.

Аналогично устанавливают режим работы транзистора VT1 переменным резистором R1, подключив капсюль BF1 к левому по схеме выводу конденсатора С1 либо нажав на кнопку SB1 (соединение конденсатора С2 с коллектором транзистора VT1 нужно, конечно, восстановить).

Налаживать устройство можно и с помощью вольтметра постоянного тока, подключаемого к выводам коллектора и эмиттера транзисторов. Соответствующим переменным резистором устанавливают напряжение на коллекторе около 6 В.

Генератор звуковой частоты (рис. 2)

Конструкции А.Партина

Он собран всего на одном транзисторе. Головной телефон ТОН-2 (BF1), капсюли которого желательно включить последовательно, и конденсаторы C1, C2 образуют колебательный контур. Чтобы возникла генерация, "отвод" контура соединен с эмиттером транзисторного каскада - это цепь положительной обратной связи.

Частота генерируемых колебаний зависит от номиналов конденсаторов контура и введенного сопротивления переменного резистора R1. Прослушивая звук в телефонах, убеждаются в изменении его тональности при перемещении движка резистора. Если есть возможность изменять питающее напряжение (уменьшать его до 3 В), нетрудно заметить и его влияние на частоту генератора.

Мультивибратор - "мигалка" (рис. 3)

Конструкции А.Партина

Если два усилительных каскада, например, изображенных на рис. 1, соединить между собой так, чтобы выходной сигнал каждого поступал на вход другого, получим генератор импульсов, называемый мультивибратором.

Наш экспериментальный мультивибратор снабжен головными телефонами BF1, с помощью которых прослушивают звук. Его тональность можно изменять переменными резисторами R2 и R4. Причем он будет восприниматься в виде щелчков разной частоты следования - в зависимости от положения движков переменных резисторов.

Чтобы нагляднее была видна работа мультивибратора, он дополнен световым сигнализатором, выполненным на транзисторе VT3. В цепь его эмиттера включен светодиод HL1. Теперь щелчки в телефонах станут сопровождаться вспышками светодиода. Их яркость устанавливают резистором R7.

По вспышкам светодиода видно, что резистор R4 влияет не только на частоту импульсов, но и на длительность вспышек, a R2 - на длительность пауз.

Перемещением движков переменных резисторов можно добиться одинаковых длительностей вспышек светодиода и пауз между ними.

Сирена (рис. 4)

Конструкции А.Партина

Конструкция выполнена на двух мультивибраторах. Один из них (на транзисторах VT3, VT4) рассчитан на получение звука частотой около 1000 Гц, импульсы другого (на транзисторах VT1, VT2) следуют с частотой 0,5...1 Гц. Поскольку выход низкочастотного генератора соединен со входом управления частотой более высокочастотного, в головных телефонах слышен сигнал изменяющейся частоты - от 500 до 1000 Гц. Эти изменения скачкообразные - при открытом транзисторе VT2 слышен звук одной тональности, а при закрытом - другой. Более плавного изменения частоты можно добиться установкой резистора R5 большего сопротивления.

Чтобы звук сирены был громче, капсюли головных телефонов ТОН-2 следует соединить параллельно.

Указатель поворотов для велосипеда (рис. 5)

Конструкции А.Партина

Основа этого устройства - генератор импульсов, выполненный на транзисторах VT1 и VT2. Частота следования импульсов зависит главным образом от емкости конденсатора С1 и сопротивления резисторов R4 - R6.

Пока подвижный контакт переключателя SA1 находится в показанном на схеме положении, генератор не работает, так как на него не подается питающее напряжение. Стоит переместить подвижный контакт влево по схеме, как эмиттерные цепи транзисторов окажутся соединенными с общим проводом (минус напряжения питания). Одновременно в эмиттерную цепь будут включены сигнальные светодиоды HL1, HL2, которые начнут мигать.

Когда подвижный контакт переключателя будет перемещен вправо по схеме, напряжение на генератор поступит через диод VD2, а мигать станут светодиоды HL3, HL4.

Если вы пожелаете установить такую конструкцию на свой велосипед, светодиоды следует прикрепить к щиткам колес: HL1 и HL2 слева от колес (соответственно на переднем и заднем щитках), а HL3 и HL4 - справа.

Акустическое реле (рис. 6)

Конструкции А.Партина

Так называют устройство, которое "срабатывает" по звуковому сигналу (громкий голос, хлопок в ладоши и т. п.) и включает нагрузку, например, лампу освещения.

Акустическое реле состоит из микрофона ВМ1 (его роль выполняет капсюль головных телефонов ТОН-2), чувствительного усилителя звуковой частоты на транзисторах VT1- VT3, детектора на диодах VD1, VD2, электронного ключа на транзисторе VT4 и электромагнитного реле К1. Контакты реле К1.1 включены в цепь светового сигнализатора срабатывания устройства - светодиода HL1. Режим работы усилителя устанавливают переменным резистором R4.

Пока нет звукового сигнала, транзистор VT4 закрыт, реле обесточено. Достаточно произнести вблизи микрофона, скажем, громкое "А", как на усилитель поступит сигнал звуковой частоты. С выхода усилителя он будет подан на детектор. Появившийся на нагрузке детектора (резистор R6) сигнал в виде однополярных импульсов большой длительности откроет транзистор VT4. Сработает реле и своими контактами подаст питание на светодиод. Яркость его ограничена резистором R7. После прекращения звукового сигнала реле еще некоторое время будет удерживаться током зарядки конденсатора С4, после чего отпустит. Светодиод погаснет.

Реле - герконовое РЭС55А, паспорт РС4.569.600-10. Его сопротивление 377 Ом с разбросом ± 56,5 Ом, напряжение срабатывания - 5,9 В, рабочее напряжение- 10 В.

Налаживание реле начинают с проверки выходного каскада - электронного ключа. При подключении резистора сопротивлением 10 кОм между плюсом источника питания и базой транзистора VT4 должны сработать реле К1 и зажечься светодиод. Затем произносят какие-нибудь звуки или фразы вблизи микрофона и вновь наблюдают зажигание светодиода. Перемещением движка переменного резистора R4 добиваются наибольшей чувствительности, чтобы акустическое реле реагировало на голос с возможно большего расстояния от микрофона.

Реле времени (рис. 7)

Конструкции А.Партина

Известно, что при подключении разряженного конденсатора к источнику питания через него начинает протекать ток зарядки. По мере зарядки конденсатора этот ток уменьшается и прекращается, когда конденсатор будет полностью заряжен. Продолжительность зарядки зависит от емкости конденсатора и сопротивления цепи, к которой он подключен.

На этом принципе построено наше реле, позволяющее отсчитывать заданное время. Как и в предыдущем устройстве, в нем использован электронный ключ на транзисторе VT2, а также световая сигнализация на светодиоде HL1. Каскад на транзисторе VT1 - усилитель тока.

Как только к устройству будет подключен источник питания, начнется зарядка конденсатора С1. Сразу же откроются оба транзистора, сработает электромагнитное реле К1 и контактами К1.1 включит светодиод. По мере зарядки конденсатора ток через транзистор VT1 начнет уменьшаться, а напряжение на резисторе R4 и, значит, на базе транзистора VT2 будет падать. Через определенное время, которое зависит от емкости конденсатора и сопротивления резистора R1, наступит момент, когда оба транзистора закроются, реле К1 отпустит, светодиод погаснет.

Для последующего пуска реле времени достаточно кратковременно нажать на кнопку SB1, чтобы разрядить конденсатор. Реле К1 такое же, что и в предыдущей конструкции.

Реле времени можно использовать, например, в охранной сигнализации. Оно будет включаться в момент входа в охраняемое помещение или выхода из него служебных лиц.

Сенсорный переключатель (рис. 8)

Конструкции А.Партина

Так называют бесконтактный переключатель, срабатывающий при касании пальцем специальной чувствительной (сенсорной) площадки, или просто сенсора. У переключателя два "канала", каждый из которых состоит из составного транзистора, собранного из двух биполярных, тринистора (VS1 - в одном "канале" и VS2 - в другом) и светодиодного индикатора.

Тринистор имеет три электрода - анод, катод, управляющий электрод - и обладает интересным свойством: если кратковременно подать на управляющий электрод плюсовое напряжение, иначе говоря, пропустить ток по цепи управляющий электрод - катод, тринистор откроется и будет оставаться в таком состоянии до тех пор, пока с него не снимут анодное напряжение либо замкнут выводы анода и катода.

Когда касаются пальцем сенсора Е1, т. е. базы составного транзистора, он открывается. Протекающий через него и управляющий электрод тринистора VS1 ток приводит к открыванию тринистора. Зажигается светодиод HL1, a HL2 остается погашенным. Конденсатор С1 заряжается так, что на его правом по схеме выводе плюс напряжения, а на левом - минус.

Если теперь коснуться сенсора Е2, откроется составной транзистор VT4 VT3, а вслед за ним - тринистор VS2. Конденсатор окажется подключенным между анодом и катодом тринистора VS1 в обратной полярности, т.е. минусом к аноду, что равносильно замыканию этих электродов. Светодиод HL1 погаснет, a HL2 - зажжется.

Некоторые экземпляры тринисторов не удерживаются в открытом состоянии из-за недостаточного анодного тока. Тогда придется увеличить этот ток подключением параллельно цепи индикации постоянного резистора. Например, в нашем случае - между нижним по схеме выводом резистора R1 и плюсом источника питания, если не удерживается тринистор VS1.

Кодовый замок (рис. 9)

Конструкции А.Партина

Такой замок можно встретить, скажем, на дверях жилых домов, квартир, лабораторий и в других местах, куда вход посторонним лицам нужно ограничить. Автоматика замка срабатывает только при нажатии в определенной последовательности нескольких кнопок, расположенных на пульте. Если это удастся, замок сработает и откроет входную дверь.

Предлагаемый макет замка содержит три "правильные" кнопки (SB1-SB3) и столько же "фальшивых" (SB4-SB6). В исходном состоянии транзистор VT1 открыт, тринисторы VS1- VS3 закрыты. "Программа" замка составлена так, что первой нужно нажать на кнопку SB3. Откроется тринистор VS3 и останется в таком состоянии, поскольку в его анодной цепи стоит нагрузка (резистор R3), обеспечивающая нужный ток удержания.

Далее нужно нажать кнопку SB2, чтобы сработал тринистор VS2 (его нагрузка - резистор R2). Последней нажимают кнопку SB1. Открывается тринистор VS1, зажигается светодиод HL1, сигнализирующий правильное срабатывание автоматики. Обычно на этом месте стоит исполнительный механизм - соленоид, выдвигающий ригель замка, либо электромагнитное реле, подающее напряжение питания на соленоид.

Если же эти кнопки нажимать в ином порядке, открыть замок не удастся. При случайном нажатии хотя бы одной кнопки из SB4-SB6 закроется транзистор VT1 и снимет питание с тринисторов - уже открывшийся из них закроется.

Чем больше кнопок "правильных" и "фальшивых", тем больше секретность замка, тем труднее разгадать код и открыть дверь.

Может случиться, что тринистор VS1 не будет удерживаться после открытия. Тогда следует воспользоваться рекомендациями для предыдущей конструкции и увеличить ток анода подключением резистора сопротивлением 300 Ом между катодом светодиода и плюсом источника питания.

Автор: А.Партин

Смотрите другие статьи раздела Начинающему радиолюбителю.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Польза белкового завтрака 14.01.2026

Правильное питание по утрам играет ключевую роль в поддержании здоровья и контроле веса. Многочисленные исследования подтверждают, что состав завтрака может влиять на аппетит в течение всего дня и качество употребляемой пищи. Австралийские ученые провели масштабный эксперимент, который показал, что употребление белковой пищи с утра помогает дольше чувствовать сытость и предотвращает переедание. В исследовании участвовали более 9 тысяч человек среднего возраста 46 лет. В период с 2011 по 2012 год специалисты анализировали рационы респондентов, оценивая долю основных макронутриентов. В среднем участники потребляли 43% углеводов, 31% жиров, 18% белков, 2% клетчатки и 4% алкоголя. Такой рацион позволил ученым проследить взаимосвязь между утренним приемом пищи и пищевым поведением в течение дня. Выяснилось, что участники, чей завтрак содержал недостаточное количество белка, ощущали повышенный аппетит в течение дня. Они ели больше, чем необходимо, и часто выбирали продукты с высоким со ...>>

Технология SmartPower HDR 14.01.2026

Ноутбуки стремительно развиваются в плане графики и мультимедийных возможностей, но яркие дисплеи с высоким динамическим диапазоном (HDR) часто становятся серьезной нагрузкой для аккумуляторов. Длительная работа с видео высокого качества или играми в HDR приводит к быстрой разрядке батареи, что ограничивает мобильность пользователей и снижает комфорт работы. Решить эту проблему призвана новая технология SmartPower HDR, разработанная совместно компаниями Samsung Display и Intel. Суть технологии заключается в динамическом управлении напряжением OLED-панелей. Чипсет ноутбука в реальном времени анализирует пиковую яркость каждого кадра и передает эти данные контроллеру дисплея, который оптимизирует подачу напряжения в зависимости от количества активных пикселей. В отличие от традиционных режимов HDR, где яркость часто фиксируется на максимальном уровне, SmartPower HDR адаптируется к конкретному контенту, что снижает энергопотребление без потери качества изображения. Технология позвол ...>>

Недосып существенно сокращает жизнь 13.01.2026

Сон является одной из самых фундаментальных потребностей человека. Он влияет на обмен веществ, работу сердца и мозга, иммунитет и общее самочувствие. Современный ритм жизни часто заставляет людей жертвовать сном ради работы, учебы или развлечений, но ученые предупреждают: регулярный недосып может иметь далеко идущие последствия для здоровья и долголетия. Исследователи из Орегонского университета здравоохранения и науки пришли к выводу, что сон менее семи часов в сутки связан с сокращением продолжительности жизни. По данным специалистов, хроническая нехватка сна не только вызывает усталость и снижение работоспособности, но и постепенно сказывается на здоровье органов и систем, увеличивая риски развития различных заболеваний. Для анализа ученые использовали обширную национальную базу данных США, сопоставляя показатели ожидаемой продолжительности жизни на уровне штатов с результатами опросов Центров контроля и профилактики заболеваний за период с 2019 по 2025 годы. Они учитывали мно ...>>

Случайная новость из Архива

Наномембрана для контроля звуковых волн в микрочипах 29.06.2025

Группа немецких ученых представила уникальное устройство - ультратонкую наномембрану, способную контролировать звуковые волны с беспрецедентной точностью. Это открытие обещает стать прорывом в области микроэлектроники и обработки сигналов.

Созданный прибор представляет собой мембрану из нитрида кремния толщиной всего 20 нанометров - это в тысячи раз тоньше человеческого волоса. Ее поверхность покрыта регулярной решеткой из треугольных отверстий, благодаря которым мембрана получила неофициальное название "нанобатут". Эта структура позволяет мембране колебаться с минимальными потерями энергии и сохранять импульс практически без затухания.

Особенность устройства в том, что различные участки поверхности движутся не только вверх и вниз, но и в боковом направлении, что существенно расширяет возможности управления волнами. Создатели - физики из Университета Констанца, Копенгагенского университета и ETH Цюриха - использовали мембрану для демонстрации новых способов транспортировки фононов. Фононы, являющиеся кванта звуковых колебаний в кристаллической решетке, играют ключевую роль в передаче информации на наноуровне.

Эксперименты показали, что с помощью "нанобатута" можно направлять фононы даже под острыми углами до 120 градусов с минимальными потерями энергии - менее одного на десять тысяч квантов отклоняется от заданного пути. Это уровень эффективности, сопоставимый с современными телекоммуникационными системами, что открывает новые горизонты для микроэлектронных схем.

Одна из целей проекта - создание "дорог" для фононов, по которым сигналы смогут эффективно перемещаться даже по сложным маршрутам внутри микрочипов. Концепция и дизайн устройства разработаны физиком Одедом Цильбербергом из Констанца, а коллеги из других университетов воплотили ее в реальность.

Интересный факт: ученый даже шутливо предположил возможность создания подобного "батута" человеческих размеров, что, по его мнению, было бы забавным экспериментом, однако он настоятельно рекомендует использовать защитный шлем для подобных испытаний.

Проект получил финансирование от Европейского исследовательского совета, а также поддерживается фондами Дании, Швейцарии и программой Horizon 2020. Полученные результаты могут стать основой для создания нового поколения микросхем с революционными возможностями передачи звуковых и колебательных сигналов.

Разработанная наномембрана демонстрирует, как инновационные материалы и продуманные архитектуры могут кардинально улучшить управление микроскопическими волнами, что важно для развития электроники и телекоммуникаций будущего.

Другие интересные новости:

▪ Спорт и пост

▪ Получение электричества из сахара в крови

▪ Ребенок с тремя родителями

▪ Новая компания на рынке подсветки ЖКИ

▪ Оперативная память смартфонов достигла 4 ГБ

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Основы первой медицинской помощи (ОПМП). Подборка статей

▪ статья Электромагнитные поля и их воздействие на человека. Основы безопасной жизнедеятельности

▪ статья Как передавали фотоснимки первые разведывательные спутники? Подробный ответ

▪ статья Работа на автомате для изготовления штуковок. Типовая инструкция по охране труда

▪ статья Приставка к паяльнику. Энциклопедия радиоэлектроники и электротехники

▪ статья Воздушный шарик проходит сквозь отверстие грампластинки. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2026