Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Измеритель угла ЗСК - приставка к мультиметру. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Автомобиль. Зажигание

Комментарии к статье Комментарии к статье

При регулировке контактной системы зажигания автомобильного двигателя необходимо измерять частоту вращения его коленчатого вала и угол замкнутого состояния контактов (ЗСК), характеризующий ширину зазора между контактами прерывателя. Описанные в журнале приборы для этой цели [1-3] результат измерения выводят на шкалу стрелочного микроамперметра. Сейчас у многих радиолюбителей появились цифровые мультиметры серий М830, М832, М890 и др. Несложная приставка к такому мультиметру позволит удобно и с большой точностью измерять частоту вращения до 2000 мин-1 и угол ЗСК в пределах 30...60 град.

Приставка легко подключается к мультиметру. После ее отключения прибор готов к использованию по прямому назначению.

Схема приставки изображена на рис. 1.

Измеритель угла ЗСК - приставка к мультиметру
(нажмите для увеличения)

Устройство собрано всего на одной цифровой микросхеме DD1. Узел ее питания состоит из развязывающего диода VD1, зарядного конденсатора С1 и стабилизатора напряжения R3VD3 со сглаживающим конденсатором С4, подключенных к ограничителю напряжения R1VD2.

Питается приставка импульсами напряжения, снимаемыми с контактов прерывателя в процессе измерения того или иного параметра. В результате двуступенной стабилизации (R1VD2 и R3VD3) колебания напряжения питания микросхемы не превышают 3 % при изменении скважности импульсов с прерывателя от 4 до 1,25.

На элементах DD1.2, DD1.3 собран одновибратор, вырабатывающий импульсы длительностью около 8 мс. Импульсы напряжения, ограниченные стабилитроном VD2, поступают на формирователь коротких импульсов C2R4R5 (резистор R4 - токоограничительный), которые запускают одновибратор при каждом плюсовом перепаде входной импульсной последовательности (т. е. при размыкании контактов).

Сформированные одновибратором одинаковые по напряжению и длительности импульсы проходят через буферный элемент DD1.4, делитель напряжения на резисторах R7, R8 и переключатель режимов работы SA1 в показанном на схеме положении "N" на интегрирующую цепь R11C5. На конденсаторе С5 выделяется постоянное напряжение, пропорциональное частоте вращения коленчатого вала двигателя.

Если переключатель SA1 перевести в нижнее по схеме положение ("а"), то цепь R11C5 окажется подключенной через делитель напряжения R9R10 к выходу инвертора DD1.1. Вход инвертора через токоограничительный резистор R2 подключен к тому же стабилитрону VD2. Каждое замыкание контактов вызывает появление импульса низкого уровня на входе инвертора. Так как угол ЗСК постоянен и не зависит от частоты следования импульсов, напряжение на конденсаторе С5 будет пропорционально углу ЗСК при любой частоте вращения коленчатого вала.

Напряжение на конденсаторе С5 измеряют цифровым мультиметром. подключаемым к разъему Х1.

Вместо К561ЛЕ5 в приставке можно использовать такую же по функции микросхему из серий К176, К564. Стабилитрон VD2 можно использовать любой на напряжение в пределах 9... 12 В, a VD3 - на напряжение 4,5...7 В (КС147А, КС168А). Диоды VD1 и VD4 - любые маломощные кремниевые. Конденсатор С5 желательно выбрать с минимальным током утечки.

Детали приставки размещены на плате размерами 40x35 мм. Выводы деталей пропущены в отверстия. Монтаж выполнен изолированным проводом. Плата укреплена в пластмассовом корпусе от сетевого блока питания активной телевизионной антенны. Переключатель режимов работы SA1 - микротумблер МТ-1 - смонтирован на крышке корпуса. К входу приставки надо припаять гибкие проводники с изолированными зажимами "крокодил" на концах.

Вид на монтаж приставки показан на рис. 2.

Измеритель угла ЗСК - приставка к мультиметру

Если в распоряжении радиолюбителя имеется мультиметр из серии DT-890, у которого расстояние между центрами гнезд равно примерно 19 мм, то штыри, имеющиеся на корпусе блока питания, надо соединить с выходом приставки - они точно войдут в гнезда "СОМ" (общий) и "DCV" мультиметра.

При измерениях переключатель пределов мультиметра надо установить в положение "2000 mV".

Для налаживания приставки ее штыри включают в гнезда мультиметра, а на вход от генератора 3Ч подают синусоидальное напряжение 12... 15 В частотой 30 Гц или последовательность прямоугольных импульсов. Переключатель SA1 приставки устанавливают в положение "N", и подстроечным резистором R8 добиваются показаний "900" на шкале мультиметра, что соответствует 900 мин-1.

При увеличении частоты генератора до 50 Гц мультиметр должен показать "1500" ±20 мВ. Если необходимо, положение движка резистора R8 корректируют. Целесообразно проверить показания мультиметра и на других значениях частоты: на 20 Гц он должен показать "600", а на 40 Гц - "1200". Теперь приставку подключают к прерывателю четырехцилиндрового двигателя и убеждаются в ее правильной работе. Увеличение напряжения на 1 мВ на выходе приставки соответствует увеличению частоты вращения на 1 мин-1.

После этого переключатель SA1 приставки переводят в положение "а". На вход подают прямоугольные импульсы со скважностью 2 ("меандр"), и подстроечным резистором R10 добиваются показаний "45" на табло приставки (45 мВ). При подключении входа приставки к прерывателю работающего двигателя мультиметр покажет угол ЗСК. Увеличение на один градус угла ЗСК соответствует увеличению напряжения на 1 мВ.

Приставку можно наладить и без генератора сигналов, подавая на ее вход переменное напряжение 15...25 В частотой 50 Гц со вторичной обмотки понижающего сетевого трансформатора. В режиме "N" подстроечным резистором R8 приставки устанавливают на табло мультиметра показание "1500". В режиме "а" движок подстроечного резистора R10 вращают до появления на табло мультиметра показания "45".

Погрешность измерения параметров при тщательной калибровке приставки не превышает 3 %, что вполне достаточно для обеспечения нормальной работы двигателя внутреннего сгорания.

Следует иметь в виду, что время установления показаний мультиметра с приставкой равно примерно 3...4 с по причине сравнительно медленной зарядки конденсатора С5 приставки и некоторой инерционности работы указанных моделей мультиметров. Кстати, вместо мультиметра можно применить и обычный стрелочный авометр с большим входным сопротивлением - не менее 50 кОм/В.

Литература

  1. Затуловский М. Прибор автолюбителя. - Радио, 1981, № 2, с. 21, 22.
  2. Хухтиков Н. Простой прибор автолюбителя. - Радио, 1994, № 2, с. 34, 35.
  3. Карасев Г. Самый простой измеритель угла ЗСК. - Радио, 1998, № 4, с. 56, 57.

Автор: И.Потачин, г.Фокино Брянской обл.

Смотрите другие статьи раздела Автомобиль. Зажигание.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Хорошо управляемые луга могут компенсировать выбросы от скота 15.02.2026

Животноводство, особенно разведение крупного рогатого скота, часто обвиняют в значительном вкладе в глобальное потепление из-за мощного парникового газа - метана, который выделяется при пищеварении у жвачных животных. Это вызывает острые политические споры и призывы к сокращению потребления мяса. Однако ученые напоминают, что полная картина климатического воздействия отрасли не ограничивается только выбросами от животных: огромную роль играет окружающая экосистема - пастбища, почва и растительность, которые способны активно поглощать углекислый газ из атмосферы. Исследователи из Университета Небраски-Линкольна решили глубже изучить этот баланс. Группа под руководством профессора Галена Эриксона сосредоточилась на том, как правильно организованные пастбища накапливают углерод в растениях и грунте благодаря естественным процессам, стимулируемым выпасом скота. Ученые подчеркивают, что при достаточном уровне осадков и грамотном управлении такие луга превращаются в мощные природные погло ...>>

NASA тестирует инновационную технологию крыла 15.02.2026

Коммерческая авиация ежегодно расходует колоссальные объемы керосина, что сказывается не только на бюджете авиакомпаний, но и на состоянии окружающей среды. В 2024 году глобальные затраты на авиационное топливо достигли 291 миллиарда долларов, и эта сумма продолжает расти. Чтобы справиться с этими вызовами, NASA активно работает над технологиями, способными заметно повысить аэродинамическую эффективность самолетов. Одним из самых перспективных направлений стало создание специальной конструкции крыла, которая максимизирует естественный ламинарный поток воздуха и минимизирует сопротивление. В январе 2026 года специалисты NASA Armstrong Flight Research Center успешно провели важный этап наземных испытаний концепции Crossflow Attenuated Natural Laminar Flow (CATNLF). Для эксперимента под фюзеляж исследовательского самолета F-15B закрепили вертикально ориентированную масштабную модель высотой около 0,9 м (3 фута), напоминающую узкий киль. Такая компоновка позволила подвергнуть прототип р ...>>

Забота о внуках очень полезна для здоровья мозга 14.02.2026

Общение между поколениями приносит радость всей семье, но мало кто задумывается, насколько активно бабушки и дедушки, заботящиеся о внуках, поддерживают свою умственную форму. Регулярное взаимодействие с детьми стимулирует мозг пожилых людей, помогая сохранять память, скорость мышления и общую когнитивную активность. Новые научные данные подтверждают, что такая добровольная помощь не только важна для общества, но и может замедлять возрастные изменения в мозге. Исследователи из Тилбургского университета в Нидерландах провели анализ, чтобы понять, приносит ли уход за внуками реальную пользу здоровью пожилых людей. Ведущий автор работы Флавия Черечес отметила, что многие бабушки и дедушки регулярно присматривают за детьми, и оставался открытым вопрос, насколько это положительно сказывается на их собственном благополучии, особенно в плане когнитивных функций. Ученые поставили цель выяснить, способен ли регулярный уход за внуками замедлить снижение памяти и других умственных способ ...>>

Случайная новость из Архива

Биологические часы дневных и ночных зверей отличаются по нейронному устройству 10.09.2016

Самое наглядное проявление биологических ритмов - это чередование сна и бодрствования: с приближением ночи наши внутренние часы напоминают нам, что пора спать, а утром, подчиняясь тому же часовому механизму, мы просыпаемся. Однако есть животные, которые не спят, наоборот, в темное время суток, и день для них - время отдыха, как для нас ночь. Как получается, что одна и та же система циркадных ритмов способна отдавать противоположные команды?

Главной деталью во внутренних часах служит так называемое супрахиазмальное, или супрахиазматическое ядро - особая область в гипоталамусе. Супрахиазматическое ядро генерирует циркадные ритмы, управляет уровнем гормонов, от которых зависят циклы сна и бодрствования, и синхронизирует работу всех прочих "часовых отделов" в тканях и органах.

Очевидно, наши внутренние ритмы должны как-то сверяться с тем, что происходит снаружи, и само ядро получает информацию о том, день на дворе или ночь, от фоточувствительных ганглионарных клеток сетчатки. От прочих ганглионарных клеток они отличаются как раз тем, что могут чувствовать свет, причем преимущественно в синей области спектра. Напомним, что фоточувствительными клетками в сетчатке являются палочки и колбочки, а ганглионарные клетки проводят сигнал, поступающий от них. Но фоточувствительные ганглионарные клетки оказались особенными - они, как мы только что сказали, могут сами воспринимать свет, и связаны с супрахиазматическим ядром. Считается, что именно с помощью них ядро ориентируется во времени суток.

Раньше полагали, что различия в системе биологических часов начинаются после супрахиазматического ядра - якобы после него есть некий переключатель, который, приняв сигнал от ядра, интерпретирует его по-разному у дневных и ночных животных: ночной импульс превращается в команду "спать" у дневных и в команду "не спать" у ночных. Однако такой переключатель, который стоял бы после супрахиазматического ядра, так и не нашли - очевидно, потому, что он в действительности находится перед ним.

Цюнь-Юн Чжоу (Qun-Yong Zhou) и его коллеги из Калифорнийского университета в Ирвайне пишут в статье в Molecular Brain, что решающая роль тут принадлежит тем самым фоточувствительным ганглионарным клеткам сетчатки, про которые все думали, что их задача - только лишь передавать информацию в ядро. Сравнивая, как устроены нейронные механизмы, контролирующие сон и бодрствование у обезьян и мышей, исследователи заметили в мозге у тех и других два конкурирующих часовых центра.

У мышей "утренний" сигнал от клеток сетчатки (которые, напомним, особо чувствительны с синему свету) идет к супрахиазмальному ядру, где и превращается в команду "спать". Но фоторецепторные клетки сетчатки связаны не только с ядром, они также посылают сигнал в структуру среднего мозга под названием верхнее двухолмие, и у обезьян "бодрящие" сигналы верхнего двухолмия преодолевают сонные импульсы супрахиазматического ядра.

Другие интересные новости:

▪ Электрический велосипед Ducati Powerstage RR Limited Edition

▪ SATA победил IDE

▪ Лечебный сеанс землетрясения

▪ Электровелосипед Zectron Electric Bike

▪ Акустическая система Creative X-Fi Sonic Carrier

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Шпионские штучки. Подборка статей

▪ статья По большому счету. Крылатое выражение

▪ статья Какое животное самое длинное? Подробный ответ

▪ статья Работа со сверлильным инструментом. Типовая инструкция по охране труда

▪ статья Электронный предохранитель. Энциклопедия радиоэлектроники и электротехники

▪ статья На рыбалке. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2026