Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Коммутатор вентилятора. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Автомобиль. Электронные устройства

Комментарии к статье Комментарии к статье

Известно, что от температурного режима работы двигателя автомобиля существенно зависят многие его характеристики. Как недостаточно прогретый двигатель, так и перегретый - источник дополнительных проблем.

Сейчас водители, которым приходится ездить по улицам больших городов, все чаще попадают в ситуации, когда в течение длительного времени двигаться можно только с пешеходной скоростью, а то и, вообще, больше стоять. Летом в таких "пробках" двигатель машины обычно быстро перегревается и требует остановки для охлаждения.

О том, как облегчить жизнь себе и автомобилю в подобных случаях, рассказывает автор этой статьи.

Грустная шутка: автомобилист, которому выпало ездить на отечественной машине, в трудностях недостатка не испытывает. Действительно, у него всегда под руками широкий их спектр - от запуска холодного двигателя в мороз до, как ни парадоксально, запуска горячего двигателя в жаркую погоду. Предлагаю обсудить некоторые особенности работы перегревающегося двигателя.

На большинство современных автомобилей устанавливают электрический вентилятор, снабженный простейшей электромеханической автоматикой (см. схему на рис. 1). Узел подключен к зажиму 15/1 замка зажигания. Заметим, что обозначение зажимов системы электрооборудования соответствует международному, которое принято также всеми ведущими отечественными производителями автомобилей.

Коммутатор вентилятора

Датчиком включения электродвигателя М1 вентилятора служит термовыключатель SF1, устанавливаемый обычно на радиаторе. Если температура двигателя машины увеличивается, но еще не достигла верхнего порогового значения (99&№176;С для автомобилей ВАЗа и 92 С - АЗЛК), контакты SF1 будут разомкнуты, а электродвигатель обесточен.

Как только двигатель разогреется до верхнего температурного порога, контакты датчика SF1 замкнутся, сработает реле К1 и контактами К1.1 включат электродвигатель М1 вентилятора. Начнется интенсивное охлаждение антифриза в системе охлаждения.

В момент, когда температура двигателя опустится ниже нижнего температурного порога (94&№176;С для автомобилей ВАЗа и 87&№176;С - АЗЛК), контакты SF1 разомкнутся и вентилятор снова окажется обесточенным. Таким образом устанавливается температурный эксплуатационный режим работы двигателя. Описанная автоматическая система охлаждения работает вполне удовлетворительно во время движения и даже на стоянке, если погода умеренно жаркая. Однако, как только вы попадете в "пробку" в знойный летний день, придется вскоре убедиться, что вентилятор автомобиля работает, не выключаясь, а температура двигателя угрожающе растет.

В таких условиях попытки хоть на короткое время выключить двигатель, чтобы остудить его, скорее всего не только не приведут к желаемому результату, но даже наоборот. Ведь при выключении зажигания будет полностью обесточен и вентилятор, а пышущий жаром двигатель создаст под капотом настоящую "сауну", карбюратор и бензонасос быстро окажутся перегретыми, а это может привести к тому, что вновь запустить двигатель вам, возможно, уже не удастся.

Как же быть?

В определенной степени облегчить ситуацию можно, применив автоматический электронный коммутатор вентилятора. Его подключают к имеющемуся узлу автоматики так, как показано на схеме рис. 2.

Коммутатор вентилятора

Узел автоматики, независимо от того, будет ли к нему подключен электронный коммутатор, целесообразно доработать, введя в него два защитных диода - VD1 и VD2. Эти диоды позволят в значительной мере уменьшить электроэрозию контактов К1.1 реле К1 и термоконтактного датчика SF1 соответственно.

Коммутатор вентилятора (см. схему на рис. 3) начинает работать только при перегретом двигателе. В номинальных же температурных условиях работой вентилятора управляет описанный выше узел автоматики, который питается с зажима 15/1 замка зажигания. Напряжение 12 В на этом зажиме присутствует только в двух (из четырех) положениях ключа зажигания - "Зажигание" и "Пуск".

Коммутатор вентилятора
(нажмите для увеличения)

Коммутатор же питается от зажима 30, т.е. фактически от плюсового вывода аккумуляторной батареи. Конденсаторы С1, С2 и диод VD4 сглаживают пульсации напряжения питания. Диод VD4 совместно с диодом VD1 защищают также слаботочную часть устройства от ошибочной подачи напряжения питания в обратной полярности.

Напряжение с замка зажигания - от его зажима 15/1 - поступает на формирователь, собранный на элементе DD1.1, резисторах R1, R2, конденсаторе C3 и стабилитроне VD2. Этот формирователь подавляет как высокочастотные пульсации напряжения, так и импульсные помехи повышенного напряжения.

Кроме того, в коммутаторе имеются три формирователя интервалов времени. Первый из них, состоящий из конденсатора С4, резистора R4 и элемента DD1.2, формирует одиночный импульс низкого уровня длительностью около 100 мс. Второй - на элементе DD1.3 и дифференцирующей цепи C5R8 - вырабатывает интервал длительностью примерно 1 мс. Наконец, третий интервал времени длительностью 60 с формируют элементы DD2.3, DD2.4 и дифференцирующая цепь C6R9.

При включенном зажигании к входам элемента DD1.1 приложено напряжение высокого уровня, значит, на выходе этого элемента низкий уровень. Поэтому конденсаторы С4-С6 разряжены и на входах элементов DD1.2, DD1.3 и нижних по схеме входах элементов DD2.3, DD2.4 действует низкий уровень.

Высокий уровень с выхода элемента DD1.2 удерживает закрытым транзистор VT1. RS-триггер, собранный на элементах DD2.1, DD2.2, может оказаться в любом состоянии, на его входах - высокий уровень. На выходе элементов DD2.3, DD2.4, включенных параллельно, будет высокий уровень, поэтому транзистор VT2 закрыт, реле К1 коммутатора обесточено, контакты К1.1 разомкнуты (на рис. 3 они не показаны).

После выключения зажигания на входе элемента DD1.1 появляется низкий уровень, на выходе - высокий. Выходным током, протекающим через сравнительно низкоомный резистор R3, начинают заряжаться конденсаторы С4-Сб. Открывается транзистор VT1, и через диод VD3 и цепь терморезистора начинает течь ток, определяемый сопротивлением резистора R6 и терморезистора.

Необходимо рассмотреть два случая: первый - двигатель холодный, сопротивление цепи терморезистора велико, второй - двигатель горячий, сопротивление мало.

При холодном двигателе с выключением зажигания на выходе элемента DD1.3 на 1 мс появится низкий уровень. Поскольку сопротивление терморезистора большое, уровень напряжения на резисторе R7 элемент DD1.4 определяет как высокий. Таким образом, и на нижнем по схеме входе триггера будет низкий уровень. Поэтому на выходе обоих элементов установится единичное напряжение.

На нижнем по схеме входе элементов DD2.3, DD2.4 в течение 1 мин (пока заряжается конденсатор С6) действует также высокий уровень. Значит, на выходе этих элементов будет низкий уровень и транзистор VT2 откроется.

Но уже через 1 мс низкий уровень на выходе элемента DD1.3 сменится высоким. Это приведет к установке триггера по нижнему входу в состояние 0 и к закрыванию транзистора VT2. За время 1 мс реле не успеет сработать, поскольку его быстродействие находится в пределах 7...10 мс.

Примерно через 100 мс зарядится конденсатор С4, закроется транзистор VT1 и на входе элемента DD1.4 снова установится низкий уровень - состояние триггера не изменится. Через минуту зарядится конденсатор С6 и на нижнем входе элементов DD2.3, DD2.4 высокий уровень сменится низким. Коммутатор перейдет в стационарное состояние, в котором может пребывать неограниченно долго.

Если же выключить зажигание при горячем двигателе, то на выходе элемента DD1.3, как и в первом случае, появится низкий уровень, а на выходе элемента DD1.4 - высокий, поскольку сопротивление терморезистора уменьшилось и напряжение на резисторе R7 элемент DD1.4 определяет теперь как низкий уровень.

В результате триггер немедленно переключится по верхнему входу в состояние 1, Спустя 1 мс и на верхнем входе триггера появится высокий уровень, не изменяющий состояния триггера. Пройдет еще 100 мс - закроется транзистор VT1 . При этом напряжение на резисторе R7 уменьшится почти до нуля (низкий уровень), а триггер остается в единичном состоянии. Поэтому в течение 1 мин транзистор VT2 будет открыт, а реле К1 включено. Значит, работает вентилятор, охлаждая жидкость в радиаторе автомобиля и обеспечивая воздухообмен в подкапотном пространстве.

По окончании минутной выдержки вентилятор выключится и коммутатор снова перейдет в стационарное состояние. Такой режим работы позволяет в необходимых случаях придать двигателю автомобиля некоторый запас тепловой устойчивости. После включения зажигания и запуска двигателя вентилятором снова начинает управлять имеющийся узел автоматики с контактным термодатчиком SF1.

Длительность отрезка времени, в течение которого включен вентилятор после срабатывания коммутатора, можно изменить подборкой резистора R9. Чем больше сопротивление этого резистора, тем дольше будет работать вентилятор. Необходимую длительность следует определить экспериментально. Чрезмерно большая выдержка приводит к бесполезной потере тепла, электроэнергии, топлива, ресурса электродвигателя вентилятора. Однако если "горячий" запуск двигателя машины доставляет вам слишком много хлопот, эти издержки считайте оправданными.

Примерно то же можно сказать и о температурном пороге срабатывания коммутатора. Значение этого порога лучше всего определить опытным путем, исходя из конкретных условий и особенностей двигателя вашего автомобиля. Так, если горячий двигатель запускается плохо, порог следует выбрать довольно низким - около 80°С, а иногда даже 60°С. Порог устанавливают подборкой резистора R6; более высокому порогу соответствует меньшее сопротивление.

Заметим здесь, что ориентироваться на термометр автомобиля не следует из-за его слишком большой погрешности. Лучше пользоваться самодельным термометром, описанным в [1].

В коммутаторе можно применить микросхемы серий К561, К564, К1561 ( К176 лучше не применять, поскольку они требуют более стабильного напряжения питания). Элементы DD1.3, DD1.4, DD2.1, DD2.2 допустимо заменить одним триггером (из двух в одном корпусе) К561ТМ2 или 564ТМ2, К1561ТМ2.

Транзистор КТ502Е (VT1) заменим на КТ814Г или КТ816Г, а транзистор КТ814Г (VT2)-на КТ816Г.

Диоды VD1 и VD4 могут быть практически любыми кремниевыми малогабаритными, а VD3 и VD5 - любыми из серий КД102, КД103, КД105, КД106, КД208, КД209. Стабилитрон VD2 подойдет любой маломощный на напряжение стабилизации от 8 до 15 В (в крайнем случае можно обойтись и без него). Оксидные конденсаторы - из серий К52, К53, ЭТО; остальные - керамические. Реле К2 - 111.3747, 112.3747, 113.3747, 113.3747-10 или какое-либо другое подходящее из числа, например, описанных в[2].

Литература

  1. Банников В. Указатель температуры двигателя. - Радио, 1996, № 7, с. 47.
  2. Банников В. Малогабаритные автомобильные электромагнитные реле. - Радио, 1994,№ 9,с.42; № 10, с. 41.

Автор: B.Банников, г.Москва

Смотрите другие статьи раздела Автомобиль. Электронные устройства.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Кислотность океана разрушает зубы акул 03.10.2025

Мировые океаны выполняют важнейшую функцию - они поглощают около трети углекислого газа, выбрасываемого в атмосферу. Это помогает замедлять темпы глобального потепления, но имеет и обратную сторону. Растворяясь в воде, CO2 образует угольную кислоту, которая повышает концентрацию водородных ионов и приводит к снижению pH. Вода становится более кислой, а последствия этого процесса уже заметны для морских экосистем. Средний показатель кислотности океана сейчас равен примерно 8,1, тогда как еще недавно за условную норму брали значение 8,2. По прогнозам, к 2300 году уровень может упасть до 7,3 - это сделает океан почти в десять раз кислее нынешнего состояния. Для обитателей морей подобные изменения означают не просто сдвиг химического равновесия, а реальную угрозу физиологическим процессам, начиная от формирования раковин у моллюсков и заканчивая охотничьим поведением акул. Чтобы выяснить, как именно кислотная среда отражается на зубах акул, группа немецких исследователей провела эксп ...>>

Почтовый космический корабль Arc 03.10.2025

Космические технологии становятся частью инфраструктуры, способной повлиять на логистику, медицину и даже военную сферу. Идея использовать орбиту как глобальный склад для срочных поставок звучала еще недавно как научная фантастика, но стартап Inversion пытается превратить ее в практическое решение. Компания Inversion появилась в начале 2021 года благодаря Джастину Фиаскетти и Остину Бриггсу, которые на тот момент были студентами Бостонского университета. Их замысел состоял в том, чтобы сделать возможной доставку грузов не только через спутниковые сети данных, но и в буквальном смысле - физических предметов. В основе лежит простая мысль: если космос обеспечивает доступ к любой точке Земли, то и грузы должны перемещаться тем же маршрутом. Уже за три года работы команда из 25 специалистов успела построить демонстрационный аппарат "Ray". Его запуск состоялся в рамках миссии SpaceX Transporter-12. Устройство весом 90 килограммов проверяло ключевые технологии Inversion, включая двухком ...>>

Лазерное обогащение урана 02.10.2025

Ядерная энергия остается одним из ключевых источников стабильного электричества, особенно для стран с растущими потребностями в энергоснабжении. Однако обеспечение бесперебойных поставок топлива для атомных станций требует современных технологий обогащения урана, которые одновременно эффективны и безопасны. Американская компания Global Laser Enrichment (GLE) делает значительный шаг в этом направлении, завершив масштабное тестирование лазерной технологии обогащения урана. Демонстрационная программа была проведена на объекте в Уилмингтоне, Северная Каролина. Тестирование технологии SILEX (Separation of Isotopes by Laser EXcitation), разработанной австралийской Silex Systems, стартовало в мае 2025 года и продлится до конца года. В ходе экспериментов компания планирует получить сотни фунтов низкообогащенного урана (LEU), который может быть использован в качестве топлива для атомных электростанций. GLE была создана в 2007 году для коммерциализации лазерных методов обогащения урана в С ...>>

Случайная новость из Архива

Увлажнитель-очиститель воздуха Dyson PH01 01.04.2020

Компания Dyson представила новый увлажнитель-очиститель воздуха Dyson PH01. В новом климатическом устройстве применена революционная система очистки воды с помощью лучей ультрафиолета C (UV-C), которые убивают 99,9% бактерий в воде. При этом, встроенный в емкость с водой биостатический испаритель с серебряной нитью помогает предотвратить размножение в ней бактерий.

Помимо увлажнения и очистки воздуха в Dyson PН01 (Pure Humidify+Cool) есть функция охлаждения воздушного потока для использования летом и эффективной очистки воздуха круглый год.

При разработке увлажнителя-очистителя Dyson PH01 инженеры компании провели масштабные исследования, чтобы рассчитать оптимальную дозу ультрафиолета C для поражения бактерий. Разработчики создали тефлоновую трубку с высокой светоотражающей способностью, что позволяет ультрафиолету C многократно отражаться по всей длине трубки. Когда вода поступает из резервуара и проходит через многократно отраженные лучи, ультрафиолет C почти мгновенно убивает 99,9% бактерий в ней.

После обработки вода заполняет трубки испарителя 3D Air-mesh. Серебряные нити, вплетенные в верхнюю и нижнюю части материала Air-mesh, создают уникальную структуру с биостатическими свойствами, которые препятствуют росту бактерий на испарителе. Внутри испарителя поток очищенного воздуха гигиенично увлажняется водным паром, который выходит из испарителя и направляется в помещение через аэродинамический профиль Air Amplifier.

Увлажнитель-очиститель воздуха Dyson PH01 автоматически распознает уровень загрязнения и влажности комнатной атмосферы, распространяя гигиенично увлажненный очищенный воздух по всему помещению.

Цена новинки - 700 долларов.

Другие интересные новости:

▪ На орбиту запущен телескоп James Webb

▪ Графеновый лазер для фотонных микросхем

▪ Разблокировка по рисунку вен

▪ Интеллект пылесосов

▪ Умная одежда, отслеживающая позы и движения

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Загадки для взрослых и детей. Подборка статей

▪ статья Телевидение. История изобретения и производства

▪ статья Как появилась кока-кола? Подробный ответ

▪ статья Первая медицинская помощь при механической травме. Медицинская помощь

▪ статья Акустический пробник. Энциклопедия радиоэлектроники и электротехники

▪ статья Системы обозначений полупроводниковых приборов иностранного производства. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025