Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Акустические системы с круговой диаграммой направленности излучения (АС пространственного поля). Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Аудиотехника

Комментарии к статье Комментарии к статье

Основная задача электроакустического звуковоспроизведения (в самом идеализированном варианте) - обеспечить соответствие вторичного звукового поля в месте прослушивания первичному в месте, где происходит само действие. Находясь на улице, в лесу, в поле или в любом другом месте, прислушавшись, мы совершенно свободно можем локализовать источники этих звуков со всех сторон. Большинство источников звуков в окружающем нас мире близки к точечным (в сравнении с длиной волн звуковых колебаний). От этих источников исходит динамически меняющийся спектр частот и, в зависимости от местоположения источника звука над уровнем пола или земли, формируется полусферическая или сферическая волна. Возможно, мне возразят, приведя пример колеблющейся струны, но давайте возьмем электрогитару, на которой звукосниматель размещен ближе к концу струн. Вроде должны быть только высокие частоты, но звукосниматель передает широкий спектр частот. С каждого участка струны можно снять практически весь спектр частот колебаний.

Мысленно представим себе следующий эксперимент: в стене комнаты без окон на расстоянии, например, 2 м вырезаны два выходящих на улицу отверстия диаметром, равным диффузору громкоговорителя. Таким образом, мы получим эквивалент акустической системы, обладающей разной диаграммой направленности для различных частот, причем для высоких частот диаграмма будет уже. Мы сидим в комнате и стараемся понять, что происходит на улице. А теперь выйдем на улицу - звуки будут окружать нас.

Именно к воссозданию пространственного звукового поля и направлены усилия разработчиков акустических систем пространственного поля (АСПП). Большинство существующих систем - векторные, т. е. направленного излучения хотя бы в части полосы звуковых частот.

Задача озвучивания помещения состоит в том, чтобы наполнить его равномерным звуковым полем (давлением) во всех его точках без максимумов и провалов. Представим такой эксперимент - зеркальная комната, и ее надо равномерно осветить. Если мы возьмем фонари направленного света (векторные излучатели), то получим отдельные лучи света, отраженные от зеркальных стен, будут максимумы и провалы. Если мы возьмем ненаправленную матовую лампу (или две разнесенные лампы), то получим заполненное более равномерно светом помещение. Из этого эксперимента мы получим вывод: менее направленное излучение звука от АС создает более равномерное звуковое поле.

Применяемые динамические головки, как источники звука, не позволяют воспроизвести весь слышимый диапазон частот без заметных искажений. Для решения этой проблемы выпускают полосовые головки, оптимизированные для своей полосы частот. Таким образом, АС состоят из нескольких головок, разнесенных на передней панели громкоговорителей, и на каждую из полосовых головок подается только часть спектра звукового сигнала, причем каждая из этих головок имеет свою диаграмму направленности.

В многополосных АС с разнесенными динамическими головками существуют некоторые проблемы: разное время задержки сигналов в полосах из-за задержки в фильтрах кроссовера, неточечность излучения спектра звука, что приводит к смещению диаграммы направленности в области разделения полос. Различная диаграмма направленности полосовых излучателей, в зависимости от места размещения слушателей, приводит к тембральной окраске звучания музыкальных инструментов.

Вывод: вторичное звуковое поле принципиально не может соответствовать первичному - рис. 1. Возникает неизбежный вопрос - что делать?

Акустические системы с круговой диаграммой направленности излучения (АС пространственного поля)
Рис. 1. Вторичное звуковое поле принципиально не может соответствовать первичному

Сначала немного истории. В 1898 г. Оливером Лоджем изобретен динамический громкоговоритель, конструкция которого в основном сохранилась до сих пор. В 1948 г. на Лондонском "Радио-шоу" был представлен первый громкоговоритель "DualConcentric" фирмы Tannoy, это первый двухполосный коаксиальный излучатель, эквивалентный точечному.

Это действительно был прорыв, который сохраняет свои преимущества до настоящего времени, однако у коаксиального громкоговорителя с рупорным высокочастотным излучателем очень невелика область комфортного прослушивания из-за обострения направленности с ростом частоты сигнала. В коаксиальной конструкции высокочастотный излучатель находится в вершине конуса низкочастотного излучателя, который выполняет функцию подвижного(!) рупора, влияя на тембральную окраску в зависимости от положения слушателя.

Следующий шаг к созданию АСПП сделал инженер В. И. Шоров. Разработанная им акустическая система 30АС103П выпускалась заводом "Янтарь" и была описана в [1]. Это двухполосная АС, где две динамические головки установлены в горизонтальной плоскости и направлены каждая на свой рассеивающий конус, переводя векторное излучение в скалярное (ненаправленное). Так как высокочастотный излучатель (головка) установлен над низкочастотным, то абсолютно точечного источника мы не получаем, но в горизонтальной плоскости получается источник с круговой диаграммой направленности.

Еще одним шагом к созданию точечного всенаправленного (точнее, с диаграммой излучения) источника звука явилась конструкция (рис. 2), предложенная Ю. Грибановым и А. Клячиным.

Акустические системы с круговой диаграммой направленности излучения (АС пространственного поля)
Рис. 2. Конструкция АС Ю. Грибанова и А. Клячина

В ней на шести гранях корпуса АС установлены шесть пар головок. Эту АС нельзя назвать АСПП, так как присутствует векторная составляющая излучения. Но она является точечным всенаправленным источником звука. Есть еще один недостаток: одинаковый сигнал излучается несколькими головками и невозможно добиться их синхронной работы и идентичности параметров. Это может приводить к потере тончайших нюансов звучания фонограммы.

Более полно идеологии АСПП соответствует так называемая контрапертурная АС (рис. 3), предложенная А. Виноградовым и А. Гайдаровым.

Акустические системы с круговой диаграммой направленности излучения (АС пространственного поля)
Рис. 3. Контрапертурная АС, предложенная А. Виноградовым и А. Гайдаровым

Создается виртуальный точечный всенаправленный источник звукового давления в полной полосе ЗЧ. Вертикальная составляющая звуковой волны несколько подавлена. Но мы опять возвращаемся к той же проблеме, что и в предыдущем случае, - не получается абсолютно симметричной структуры. На высоких частотах звуковые волны, излучаемые двумя головками, могут не совпадать по фазе, и возникшая интерференция приведет к искажению исходного тембра. Искажения, конечно, меньше, чем в предыдущем способе (меньше головок), но проблема остается. Есть еще одна проблема, связанная с подобной конструкцией. Использование двух широкополосных головок не всегда позволяет воспроизвести необходимый диапазон частот, даже если использовать коаксиальные (двухполосные). Необходимую трехполосность в такой структуре реализовать не представляется возможным.

Принцип работы третьего типа АСПП легко понять из конструкции, условно изображенной на рис. 4. Исключение половины комплекта громкоговорителей контрапертурной АС позволяет избежать свойственных ей недостатков. Здесь также излучаются звуковые волны с круговой диаграммой направленности во всем диапазоне частот.

Акустические системы с круговой диаграммой направленности излучения (АС пространственного поля)
Рис. 4. Принцип работы третьего типа АСПП

В настоящее время наша фирма, имеющая ряд патентов на подобные АС, выпускает АСПП по двум структурам. Двухполосные, изготовленные по рис. 5, выпускаются в трех объемах: 5, 10 и 40 л для бытового использования в жилых комнатах. Для небольших кинозалов выпускается специальная АСПП мощностью 1000 Вт, обеспечивающая высокое звуковое давление. Структура АСПП, изображенная на рис. 6, реализует трехполосный принцип разделения спектра, что существенно упрощает проблему подбора головок. Среди изделий фирмы есть и АСПП с объемом корпуса 70 л, она рассчитана на высококачественное воспроизведение стереофонических фонограмм.

Акустические системы с круговой диаграммой направленности излучения (АС пространственного поля)
Рис. 5. Двухполосная АСПП

Акустические системы с круговой диаграммой направленности излучения (АС пространственного поля)
Рис. 6. Трехполосная АСПП

Если говорить об особенностях АСПП, то в сравнении с АС прямого излучения можно предположить некоторое ослабление атаки в звучании инструментов, так как звук излучается во все стороны, а не направленно на слушателей.

Но что дает использование подобных АС в реальных помещениях? Создается ровное пространственное звуковое поле - где бы вы ни находились, везде звук тембрально одинаков. Стоите вы перед АС или сбоку - звук не меняется, вас окружает однородное звуковое поле. Получается очень комфортное озвучивание больших площадей: необыкновенное ощущение комфортности и эмоциональной вовлеченности создают среду, недостижимую с обычными АС. Показанные здесь три типа АСПП не исчерпывают всего многообразия различных вариантов.

Утверждать однозначно, что какой-то звук лучше или хуже другого при превышении некоего порога качества, в значительной степени бессмысленно: восприятие - это область эмоций, а они разные, поэтому есть множество усилителей и акустических систем. Но что однозначно - этот звук ближе к окружающему нас естественному.

В качестве примера рассмотрим выпускаемую нашей фирмой акустическую систему АС200. Эта система изготавливается в настольном и подвесном варианте с применением динамических головок, выпускаемых ООО "Лаборатория АСА" [2]. Мы используем в качестве НЧ-головки модель В1602.8, а в качестве ВЧ-головки - Т252.4. На рис. 7 приведен упрощенный чертеж АС.

Акустические системы с круговой диаграммой направленности излучения (АС пространственного поля)
Рис. 7. Упрощенный чертеж АС

Подобная вертикальная конструкция АС позволяет использовать в качестве корпуса трубу, что выгодно отличает ее от стандартных кубических корпусов. В качестве корпуса 11 (рис. 8) выбрана пластиковая труба ПВХ 200x4,9x2000, используемая, в частности, в канализационных системах. Одной трубы длиной 2 м достаточно для двух АС. Кольца 1, 2, 6, 10 изготавливают из МДФ толщиной 16 мм. На рис. 9 приведен чертеж деталей 2, 6. Детали крепят к корпусу потайными саморезами 3x19 мм (3-4 шт.).

На деталь 2, установленную в нижней части корпуса, крепится фильтр 9, она имеет отверстие для вывода сигнального провода. Деталь 6, на которой установлены динамические головки, крепится в корпусе 11 с условием, что верхняя плоскость кольца установлена заподлицо с нижним краем окон корпуса 11. Для прокладки провода, идущего к ВЧ-головке 4, в одно из крепежных отверстий НЧ-головки 5 не устанавливают саморез, а пропускают провод на ВЧ-головку, которую закрепляют любым способом (на бонках, на конструкции, спаянной из медной проволоки диаметром 1...1,5 мм) и фиксируют саморезами, которые крепят НЧ-головку. Основное требование - это обеспечение необходимого зазора между диффузором ВЧ-головки и рассеивающим конусом 3. Конус, показанный на рис. 10, можно изготовить из МДФ или толстого пластика. Для придания жесткости пластиковый конус можно запенить.

Акустические системы с круговой диаграммой направленности излучения (АС пространственного поля)
Рис. 8. Корпус АС - пластиковая труба ПВХ 200x4,9x2000

Акустические системы с круговой диаграммой направленности излучения (АС пространственного поля)
Рис. 9. Чертеж деталей 2, 6

Акустические системы с круговой диаграммой направленности излучения (АС пространственного поля)
Рис. 10. Пластиковый конус

Желательна глянцевая, лакированная поверхность конуса для уменьшения потерь на высоких частотах. Конус фиксируется на детали 2 с помощью клея.

В качестве звукопоглотителя используется тонкий синтепон, который набивают плотно; критерием плотности набивки является отсутствие бубнения в низкочастотном регистре. Можно попробовать насыпать слой толщиной 5...10 см мелкого активированного угля, который обязательно сверху закрыть синтепоном.

Детали 1 и 10 определяют внешний вид, их можно покрасить или фанеровать. Деталь 1 крепится к детали 2 на шкантах или мелкими саморезами, а деталь 10 - саморезами, с выпуском соединительного кабеля.

Для придания АС товарного вида можно пошить "чулок" из тонкой синтетической ткани и прикрепить ее степлером к верхней и нижней детали 2.

Схема разделительного фильтра показана на рис. 11.

Акустические системы с круговой диаграммой направленности излучения (АС пространственного поля)
Рис. 11. Схема разделительного фильтра

Катушку индуктивности L1 наматывают эмалированным проводом диаметром 0,5...0,8 мм на пластиковую трубу диаметром 25 мм, ширина намотки - 20 мм. 120 витков провода длиной 10,2 м создают индуктивность 0,3 мГн. Конденсатор С1 - К73-17 или К78-2 (лучше). Резистор R1 сопротивлением 0,2 Ом изготавливают из высокоомной проволоки: берут кусок длиной несколько метров, измеряют его сопротивление и откусывают соответствующую нужному сопротивлению часть. Диаметр проволоки должен быть не менее 0,2 мм. Фазу (полярность) включения головок определяют опытным путем. Здесь на схеме показана полярность, оптимизированная при измерении на "розовом" шуме.

Литература

  1. Шоров В., Янков В. Акустическая система для самостоятельного изготовления. - Радио, 1997, № 4, с. 12-14.
  2. Лаборатория АСА. - asalab.net.

Автор: В. Костин

Смотрите другие статьи раздела Аудиотехника.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Лабораторная модель прогнозирования землетрясений 30.11.2025

Предсказание землетрясений остается одной из самых сложных задач геофизики. Несмотря на развитие сейсмологии, ученые все еще не могут точно определить момент начала разрушительного движения разломов. Недавние эксперименты американских исследователей открывают новые горизонты: впервые удалось наблюдать микроскопические изменения в контактной зоне разломов, которые предшествуют землетрясению. Группа под руководством Сильвена Барбота обнаружила, что "реальная площадь контакта" - участки, где поверхности разлома действительно соприкасаются - изменяется за миллисекунды до высвобождения накопленной энергии. "Мы открыли окно в сердце механики землетрясений", - отмечает Барбот. Эти изменения позволяют фиксировать этапы зарождения сейсмического события еще до появления традиционных сейсмических волн. Для наблюдений ученые использовали прозрачные акриловые материалы, через которые можно было отслеживать световые изменения в зоне контакта. В ходе искусственного моделирования примерно 30% ко ...>>

Музыка как естественный анальгетик 30.11.2025

Ученые все активнее исследуют немедикаментозные способы облегчения боли. Одним из перспективных направлений становится использование музыки, которая способна воздействовать на эмоциональное состояние и когнитивное восприятие боли. Новое исследование международной группы специалистов демонстрирует, что даже кратковременное прослушивание любимых композиций может значительно снижать болевые ощущения у пациентов с острой болью в спине. В эксперименте участвовали пациенты, обратившиеся за помощью в отделение неотложной помощи с выраженной болью в спине. Им предлагалось на протяжении десяти минут слушать свои любимые музыкальные треки. Уже после этой короткой сессии врачи фиксировали заметное уменьшение интенсивности боли как в состоянии покоя, так и при движениях. Авторы исследования подчеркивают, что музыка не устраняет саму причину боли. Тем не менее, она воздействует на эмоциональный фон пациента, снижает уровень тревожности и отвлекает внимание, что в сумме приводит к субъективном ...>>

Алкоголь может привести к слобоумию 29.11.2025

Проблема влияния алкоголя на стареющий мозг давно вызывает интерес как у врачей, так и у исследователей когнитивного старения. В последние годы стало очевидно, что границы "безопасного" употребления спиртного размываются, и новое крупное исследование, проведенное международной группой ученых, вновь указывает на это. Работы Оксфордского университета, выполненные совместно с исследователями из Йельского и Кембриджского университетов, показывают: даже небольшие дозы алкоголя способны ускорять когнитивный спад. Команда проанализировала данные более чем 500 тысяч участников из британского биобанка и американской Программы миллионов ветеранов. Дополнительно был выполнен метаанализ сорока пяти исследований, в общей сложности включавших сведения о 2,4 миллиона человек. Такой масштаб позволил оценить не только прямую связь между употреблением спиртного и развитием деменции, но и влияние генетической предрасположенности. Один из наиболее тревожных результатов касается людей с повышенным ге ...>>

Случайная новость из Архива

Исследование вулканов изнутри 19.10.2024

Вулканические извержения - это одно из самых опасных природных явлений, которые могут нанести значительный ущерб как экосистемам, так и человеческим поселениям. Для того чтобы лучше понимать процессы, происходящие внутри вулканов и предсказывать их извержения, ученым необходимо заглянуть в глубины этих "природных пороховых бочек". Команда исследователей из Французского национального центра научных исследований (CNRS) разработала новый интеллектуальный метод визуализации, который позволяет это сделать с беспрецедентной детализацией.

Этот метод основан на улучшенной версии так называемой матричной визуализации, которая использует сейсмические волны для создания изображения внутренней структуры вулкана. Несмотря на то, что технологии сейсмического картирования применялись и раньше, новый подход позволяет ученым преодолевать такие сложности, как нехватка датчиков для точного измерения сейсмических колебаний, искажения сигналов и сложности их интерпретации.

Вдохновение для разработки этого метода исследователи нашли в медицинских технологиях визуализации, таких как МРТ, а также в оптических микроскопах. Это позволило адаптировать существующие идеи для задач вулканологии, делая интерпретацию сейсмических волн проще и точнее. Основная задача при изучении вулканов - это понимание процессов, происходящих в магматических хранилищах под землей, и прогнозирование возможных извержений. Новая методика значительно упрощает эту задачу.

Принцип работы метода заключается в анализе сейсмических волн, которые распространяются через различные слои земной коры и отражаются от разных геологических структур. Эти колебания помогают исследователям "прочитать" состав и структуру подземных пород. Однако традиционные методы сталкивались с искажениями сигналов, что затрудняло точное картирование. Новый подход использует волновые корреляции, устойчивые к таким искажениям, а также эффект памяти для обратного восстановления исходных сигналов. Это позволило ученым создать более четкую картину внутренней структуры вулканов.

Исследовательская группа испытала новый метод на вулкане Ла-Суфриер в Гваделупе, одном из активных вулканов Карибского региона. Этот вулкан был выбран не случайно: вокруг него установлена довольно плотная сеть геофонов - приборов, фиксирующих сейсмические волны. Эти данные стали основой для картирования структуры вулкана. Инновационный подход позволил объединить информацию, полученную от нескольких датчиков, для создания единого детализированного изображения, что было невозможно с использованием отдельных геофонов.

Главное преимущество метода заключается в том, что он не требует установки дополнительных приборов. Матричная визуализация использует уже существующие сети датчиков, что делает метод экономически выгодным и доступным для применения в других регионах. Благодаря этому, ученые смогли заглянуть на глубину до 10 километров с разрешением до 100 метров - это значительно превосходит возможности предыдущих методов.

Результаты исследования показали сложную структуру магматических хранилищ под Ла-Суфриером, а также связи между различными слоями геологических структур. Эти данные помогают лучше понять, как магма хранится и движется под землей, что является важным шагом к более точному прогнозированию извержений. По мере совершенствования метода можно будет не только предсказывать вулканическую активность, но и оценивать возможные риски для окружающих территорий.

Новый метод визуализации глубинных структур вулканов открывает широкие перспективы для исследования вулканической активности и повышения точности прогнозирования. Это важный шаг к созданию более безопасных условий для людей, живущих вблизи активных вулканов, и к пониманию фундаментальных процессов, происходящих в недрах Земли.

Другие интересные новости:

▪ Слизняки помогли создать хирургический клей

▪ Дизтопливо из сахара

▪ Платформа AMD AM1 (Kabini)

▪ Опасность электронного мусора

▪ Кишечные паразиты помогают забеременеть

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Цифровая техника. Подборка статей

▪ статья Устройство колодца. Советы домашнему мастеру

▪ статья Что такое керлинг? Подробный ответ

▪ статья Секвойя. Чудо природы

▪ статья Чистка находок. Энциклопедия радиоэлектроники и электротехники

▪ статья Иголка-загадка. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025