Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Механическое демпфирование диффузоров. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Акустические системы

Комментарии к статье Комментарии к статье

Выпускаемой отечественной промышленностью бытовой радиоаппаратуре (телевизорах, приемниках, магнитофонах) чаще всего используются широкополосные динамические головки небольшой мощности, такие, как 2ГД-40, ЗГД-38 и т. п. Наряду с достоинствами (невысокая цена, хорошая отдача, широкая полоса воспроизводимых частот), эти головки имеют существенные недостатки: значительная неравномерность АЧХ излучения на средних частотах; наличие посторонних призвуков (у некоторых громкоговорителей) при воспроизведении синусоидального сигнала в диапазоне 500...2 000 Гц; значительный разброс параметров между отдельными экземплярами.

Все перечисленные недостатки вызваны одной причиной - образованием резонирующих поверхностей на небольших участках диффузора, гофра или воротника. Площади этих поверхностей могут быть невелики, но из-за высокой добротности возникающего резонансного процесса, они излучают весьма интенсивные акустические волны. Резонансные частоты отдельных участков диффузоров различны, что приводит к неравномерности АЧХ излучения головки и ее диаграммы направленности.

Влияние таких локальных резонансов столь велико, что часто воспроизведение головкой синусоидального сигнала даже сравнительно небольшой мощности сопровождается заметными на слух посторонними призвуками. При увеличении подводимой мощности сигнала до паспортной величины вероятность возникновения посторонних призвуков резко возрастает. Участок диффузора, "виновный" в появлении посторонних призвуков, можно обнаружить по резкому изменению тембровой окраски звучания (усилению или исчезновению призвука) при легком прикосновении к его поверхности. При отсутствии заметных на слух призвуков резонирующие участки можно локализовать с помощью микрофонного капсюля малых размеров (например, ДЭМШ), подключенного к осциллографу. Капсюль располагают над разными участками диффузора на расстоянии 1...3 мм и наблюдают форму сигнала при подведении к головке прямоугольных колебаний частотой 50...100 Гц (рис. 1,а). Когда капсюль находится над резонирующей поверхностью, наблюдаемый на экране осциллографа отклик оказывается промодулированным медленно затухающим синусоидальным сигналом (рис. 1, б). Если удалить капсюль от поверхности диффузора на расстояние 20...30 см, то на экране можно наблюдать суммарный отклик от всей поверхности диффузора, который, как правило, имеет сложную форму (рис. 1, в).


(нажмите для увеличения)

В ходе проведенных автором испытаний было установлено, что резонансные колебания большой амплитуды чаще всего возникают на отдельных сегментах гофра или на небольших участках воротника. Участки диффузора резонируют с меньшей амплитудой, но поскольку площадь самих участков весьма значительна, их вклад в формирование АЧХ излучения головки достаточно велик.

Для устранения указанных искажений звучания были опробованы различные способы изменения механических характеристик резонирующих участков, а также доработка головок по методике, приведенной в [1]. В ходе этих работ было установлено, что повышение жесткости материала резонирующих участков не дает стабильных результатов, неэффективно и механическое демпфирование диффузора и гофра жидкими вязкими жидкостями (глицерин, касторовое масло).

Нанесение герлена на воротник диффузора по приведенной в [1] методике устраняет резонансы воротника, но почти не влияет на локальные резонансы сегментов гофра и участков диффузора. Локальные резонансы гофра и диффузора подавляются пропиткой "пораженных" участков раствором герлена в бензине.

Автором отработана и предлагается читателям следующая методика доработки головок, позволяющая получить хорошие и стабильные результаты.

Прежде всего необходимо приготовить растворы герлена в бензине двух консистенций № 1 и № 2. После опускания кисточки а раствор № 1 с нее должны отрываться густые капли. Раствор № 2 - вдвое разбавленный раствор № 1. Затем через окна в диффузородержателе с помощью тонкой кисточки следует промазать зазор между воротником и диффузородержателем раствором № 1. Когда раствор высохнет, повторить операцию. Затем на тыльную и внешнюю стороны диффузора и гофра нужно нанести раствор № 2 так, чтобы диффузор им полностью пропитался, но на его поверхности не было наплывов. После его высыхания на гофр и примыкающую к нему часть диффузора с обеих сторон наносят тонкий слой раствора № 1 шириной 2...3 см (каплю раствора "растягивают" по поверхности, как при крашении).

Параметры головки можно измерять только на следующий день после доработки.

По приведенной методике были доработаны головки 2ГД-40, ЗГД-42, ЗГД-38, 4ГД-53, 4ГД-8. У трех первых типов головок существенно уменьшилась неравномерность АЧХ излучения и диаграмм направленности в диапазоне 500...6 000 Гц, а на их переходных характеристиках практически исчезли паразитные выбросы (рис. 1, г). У двух последних эффект доработки выражен слабее (из-за повышенной толщины и жесткости гофра и периферийных участков диффузора), но также весьма ощутим.

Влияние механического демпфирования диффузора на параметры головок было проверено на примере доработки 18 головок 2ГД-40 (ЗГДШ-2). Перед доработкой у шести из них прослушивались посторонние призвуки при подаче на них синусоидального сигнала мощностью 1 Вт. Призвук прослушивался на одной или двух дискретных частотах в диапазоне 600...1500 Гц. Источниками призвуков в пяти случаях оказались сегменты гофра, расположенные по большой оси диффузора, а в одном - воротник. Еще у четырех головок призвуки появились при подведении к ним сигнала мощностью 3 Вт (источник - воротник). Все головки имели изрезанные АЧХ излучения и диаграммы направленности, на их переходных характеристиках наблюдались паразитные выбросы (рис. 1,в).

После доработки головок их АЧХ излучения стали более гладкими. На рис. 2 показана зона разброса, в которую уложились АЧХ излучения всех 18 головок (характеристики нормировались относительно значений на частоте 250 Гц).

При подаче на доработанные головки синусоидального сигнала мощностью 8 Вт в диапазоне частот выше 500 Гц посторонних призвуков не было обнаружено ни у одной головки, что свидетельствует о значительном снижении нелинейных искажений, вносимых диффузором.

Благодаря высокой повторяемости формы АЧХ излучения доработанных головок появляется возможность дальнейшего ее выравнивания во всем диапазоне воспроизводимых частот с помощью коррекции АЧХ усилителя. Принципиальная схема корректора с АЧХ, показанной на рис. 2 (кривая 1), приведена на рис. 3.

При подключении любой из 18 доработанных головок к скорректированному усилителю неравномерность их АЧХ излучения в диапазоне 150... 12000 Гц не превышала ±3 дБ, а на частоте 18 кГц у некоторых головок наблюдался спад не более -6дБ. Типовая АЧХ излучения головки с корректором приведена на рис. 4, а ее типовая переходная характеристика - на рис. 1, д.

АЧХ корректора имеет значительный подъем на высших частотах, однако это не приводит к заметному уменьшению динамического диапазона УМЗЧ, так как амплитуда высокочастотных составляющих в спектре музыкального сигнала невелика. В ряде случаев можно ограничиться коррекцией АЧХ излучения головки до частоты 14...16 кГц, тогда подъем в АЧХ корректора на высшей рабочей частоте будет значительно ниже.

Этот же корректор можно использовать и для коррекции АЧХ головок ЗГД-42, ЗГД-38 и 4ГД-53 (автором было доработано по две головки каждого из перечисленных типов, АЧХ всех доработанных головок уложились в приведенную на рис. 2 зону разброса).

Описанная выше доработка влияет и на другие параметры головок: повышается на 5...10 % собственная резонансная частота, снижается на 20... 40 % акустическая добротность (при этом полная добротность остается практически неизменной), за счет незначительного увеличения массы диффузора на 1...2 дБ снижается отдача, значительно повышается механическая прочность диффузора и гофра.

Хочется обратить внимание радиолюбителей на тот факт, что снижение чувствительности головки на 1 ...2 дБ эквивалентно уменьшению ее КПД на 20...37 %. Это накладывает определенные ограничения на применимость указанной выше доработки: в конструкциях, где нет запаса УМЗЧ по мощности, а также там, где важна экономичность источника питания, следует ограничиться доработкой, рекомендованной в [1].

Следует также отметить, что корректор улучшает звучание головок, доработанных не только по данной методике и по методике [1], но даже и недоработанных головок. Во всех случаях заметно выравниваются АЧХ излучения головок, а при сравнительном прослушивании эксперты отмечают более приятное звучание головок с корректором (оно становилось "мягким", "сочным", более "мягко" в сравнении с высокочастотными головками воспроизводились высшие звуковые частоты).

Звучание доработанных головок заметно выигрывает при воспроизведении сигнала повышенной мощности, поэтому их можно рекомендовать для использования в стационарной аппаратуре, а также в двухполосных громкоговорителях в качестве среднечастотных и высокочастотных излучателей.

Автор сравнивал звучание громкоговорителя, в котором установлены две головки 2ГД-40 с разворотом в горизонтальной плоскости на 45°, и двухполосного громкоговорителя с головками 15ГД-11А и 10ГД-35. Всеми слушателями было отмечено, что качество звучания однополосного громкоговорителя не уступает двухполосному, а некоторые даже отдали предпочтение однополосному.

Метод улучшения параметров широкополосных головок посредством механического демпфирования материала диффузора весьма эффективен и применительно к высокочастотным головкам с бумажным диффузором (ЗГД-31, 2ГД-36 и 1ГД-3). Причем головки ЗГД-31 и 2ГД-36 вначале рекомендуется доработать по приведенной в [2] методике (войлок можно заменить полосками герлена). После разборки головки на внутреннюю поверхность гофра и прилегающую к нему часть диффузора шириной 1...1.5 см следует нанести два слоя раствора № 1, а после ее сборки аналогично обработать и наружную сторону диффузора. У головок 1 ГД-3 раствор рекомендуется наносить на внешний край диффузора шириной 3...4 мм.

Такая доработка высокочастотных головок сгладила их АЧХ излучения и переходные характеристики при сохранении прежней чувствительности, позволила значительно уменьшить акустическую добротность и вносимые диффузором нелинейные искажения в нижней части воспроизводимого ими диапазона частот (два последних фактора позволяют снизить требования к используемому совместно с высокочастотной головкой разделительному фильтру).

В заключение следует отметить, что полностью реализовать все преимущества, которые дает механическое демпфирование диффузора, гофра, воротника и центрирующей шайбы головки можно только в заводских условиях. Ведь благодаря значительному повышению механической прочности гофра и диффузора появляется возможность делать их более тонкими, что позволило бы сохранить или даже повысить чувствительность головок, снизить их резонансную частоту до 50... 80 Гц, а оптимизацией пропитки диффузоров сгладить их АЧХ излучения. Но реализовать указанные возможности можно лишь на стадии проектирования...

Литература:

  1. Шоров В. Улучшение головок громкоговорителей. Радио. 1986, № 4. с. 39-41.
  2. Макшаков С., Горев Ю. Усовершенствование головок ЗГД-31 -1300. - Радио, 1982, № 7, с. 44.

Автор: В.Жбанов

Смотрите другие статьи раздела Акустические системы.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Особенности почек помогают легче переносить высоту 18.01.2025

Высокогорные регионы всегда привлекали внимание исследователей, изучающих, как человек адаптируется к жизни в условиях разреженного воздуха. Недавнее исследование группы ученых из Университета Маунт-Ройал в Канаде, возглавляемое доктором Тревором Деем, проливает свет на важную роль почек в акклиматизации к большим высотам. Работы канадских ученых объясняют, почему представители народности шерпа, которые веками живут в высокогорных районах Тибета, значительно лучше переносят высокогорье. В своем исследовании ученые наблюдали за дыханием и составом крови участников во время их подъема на высоту 4300 метров в Гималаях, в Непале. Эксперимент проводился с участием двух групп: одна состояла из жителей низменностей, не привыкших к горной среде, а другая - из шерпов, чей организм приспособлен к жизни на большой высоте. Основное различие между этими группами было в том, как их организмы реагировали на дефицит кислорода в воздухе. У шерпов наблюдалась более быстрая и масштабная адаптация к ...>>

Производство электричества с помощью термоядерного синтеза 18.01.2025

Американская компания Commonwealth Fusion Systems (CFS) нацелена на создание первой в мире термоядерной электростанции, способной подключаться к электрической сети. Этот амбициозный проект, известный как ARC (Affordable, Robust, Compact), будет построен вблизи города Ричмонд, штат Вирджиния. В соответствии с планами, новая электростанция сможет производить до 400 мегаватт чистой энергии, что вполне хватит для обеспечения электричеством 150 тысяч домохозяйств. Прогнозируется, что станция начнет работу в 2030-х годах. Принцип работы термоядерной электростанции основан на процессе термоядерного синтеза, который происходит в ядре звезд. В отличие от традиционной атомной энергетики, где используется деление ядер атомов с образованием радиоактивных отходов, термоядерный синтез создает в качестве побочного продукта безопасный гелий. Для того чтобы удерживать плазму с температурой свыше 100 миллионов градусов Цельсия, установка будет использовать мощные магнитные поля. Тем не менее, н ...>>

Экологическая защита для овощей и фруктов 17.01.2025

Исследователи из женского колледжа Шри Нараяна в Колламе, Керала, Индия, разработали инновационный способ продления свежести фруктов и овощей. Группа под руководством Пурнимы Виджаян предложила использовать съедобное покрытие, созданное на основе целлюлозных нановолокон (CNF), полученных из луковой шелухи. Этот подход не только продлевает срок хранения продуктов, но и способствует их безопасности благодаря включению нанокуркумина, известного своими антимикробными свойствами. Основным компонентом покрытия являются CNF, полученные из переработанных отходов лука. Эти нановолокна соединяются с синтетическим биополимером, который улучшает структуру покрытия, устраняя проблемы с водостойкостью и термической стабильностью, ранее свойственные материалам на основе CNF. Кроме того, добавление нанокуркумина усиливает антимикробные свойства покрытия, делая его особенно эффективным для предотвращения порчи. Для проверки эффективности этой разработки ученые провели эксперимент с апельсинами. П ...>>

Случайная новость из Архива

19-нм флеш-память второго поколения от Toshiba 16.11.2013

Корпорация Toshiba объявила о выпуске новых встраиваемых модулей флеш-памяти на основе логики NAND, в которых интегральные схемы (ИС) NAND интегрированы с использованием 19-нанометровой технологии второго поколения. Этот модуль полностью совместим с последним стандартом eMMC и предназначен для применения в широком спектре цифровых потребительских продуктов, включая смартфоны, планшетные компьютеры и цифровые видеокамеры. Серийное производство начнется с конца ноября.

Продолжает расти спрос на ИС флэш-памяти NAND высокой плотности с поддержкой видео высокого разрешения и усовершенствованным хранилищем. Это особенно актуально там, где требуется встроенная память с функцией контроллера (eMMC), которая минимизирует требования к разработке и облегчает интеграцию памяти в продукцию.

В разработанный компанией новый встраиваемый модуль памяти объемом 32 Гбайт интегрировано четыре созданных с использованием передовой 19-нм технологии Toshiba второго поколения ИС NAND объемом 64 Гбит (эквивалент 8 Гбайт) каждая и выделенный контроллер. Все это размещено в компактном корпусе размером 11,5 x 13 x 1,0 мм. Модуль совместим со стандартом JEDEC eMMC версии 5.0, опубликованным JEDEC в сентябре этого года, и обеспечивает высокую производительность чтения и записи благодаря применению нового стандарта высокоскоростного интерфейса HS400.

Toshiba предложит ИС NAND в виде линейки встраиваемых однокорпусных модулей флеш-памяти NAND объемом от 4 до 128 Гбайт. Все они будут интегрированы с контроллером, управляющим базовыми функциями использования NAND. Вслед за модулями объемом 16 и 32 Гбайт Toshiba выпустит также модули с объемами 4, 8, 64 и 128 Гбайт. Для выпускаемых продуктов заявлена скорость чтения до 270 Мбайт/с и скорость записи 50-90 Мбайт/с.

Другие интересные новости:

▪ Датчик изображения Samsung ISOCELL GN2

▪ Windows-ПК без системного блока

▪ Боевые лазеры для бомбардировщиков

▪ Собаки могут видеть носом

▪ Извлечение редких металлов с помощью бактерий

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Аудиотехника. Подборка статей

▪ статья В доме повешенного не говорят о веревке. Крылатое выражение

▪ статья Какое направление мысленной числовой линии является врожденным? Подробный ответ

▪ статья Гречиха посевная. Легенды, выращивание, способы применения

▪ статья Кабельный пробник на РIC-контроллерах. Энциклопедия радиоэлектроники и электротехники

▪ статья Блок фильтров для трехканального усиления. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025