Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Механическое демпфирование диффузоров. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Акустические системы

Комментарии к статье Комментарии к статье

Выпускаемой отечественной промышленностью бытовой радиоаппаратуре (телевизорах, приемниках, магнитофонах) чаще всего используются широкополосные динамические головки небольшой мощности, такие, как 2ГД-40, ЗГД-38 и т. п. Наряду с достоинствами (невысокая цена, хорошая отдача, широкая полоса воспроизводимых частот), эти головки имеют существенные недостатки: значительная неравномерность АЧХ излучения на средних частотах; наличие посторонних призвуков (у некоторых громкоговорителей) при воспроизведении синусоидального сигнала в диапазоне 500...2 000 Гц; значительный разброс параметров между отдельными экземплярами.

Все перечисленные недостатки вызваны одной причиной - образованием резонирующих поверхностей на небольших участках диффузора, гофра или воротника. Площади этих поверхностей могут быть невелики, но из-за высокой добротности возникающего резонансного процесса, они излучают весьма интенсивные акустические волны. Резонансные частоты отдельных участков диффузоров различны, что приводит к неравномерности АЧХ излучения головки и ее диаграммы направленности.

Влияние таких локальных резонансов столь велико, что часто воспроизведение головкой синусоидального сигнала даже сравнительно небольшой мощности сопровождается заметными на слух посторонними призвуками. При увеличении подводимой мощности сигнала до паспортной величины вероятность возникновения посторонних призвуков резко возрастает. Участок диффузора, "виновный" в появлении посторонних призвуков, можно обнаружить по резкому изменению тембровой окраски звучания (усилению или исчезновению призвука) при легком прикосновении к его поверхности. При отсутствии заметных на слух призвуков резонирующие участки можно локализовать с помощью микрофонного капсюля малых размеров (например, ДЭМШ), подключенного к осциллографу. Капсюль располагают над разными участками диффузора на расстоянии 1...3 мм и наблюдают форму сигнала при подведении к головке прямоугольных колебаний частотой 50...100 Гц (рис. 1,а). Когда капсюль находится над резонирующей поверхностью, наблюдаемый на экране осциллографа отклик оказывается промодулированным медленно затухающим синусоидальным сигналом (рис. 1, б). Если удалить капсюль от поверхности диффузора на расстояние 20...30 см, то на экране можно наблюдать суммарный отклик от всей поверхности диффузора, который, как правило, имеет сложную форму (рис. 1, в).


(нажмите для увеличения)

В ходе проведенных автором испытаний было установлено, что резонансные колебания большой амплитуды чаще всего возникают на отдельных сегментах гофра или на небольших участках воротника. Участки диффузора резонируют с меньшей амплитудой, но поскольку площадь самих участков весьма значительна, их вклад в формирование АЧХ излучения головки достаточно велик.

Для устранения указанных искажений звучания были опробованы различные способы изменения механических характеристик резонирующих участков, а также доработка головок по методике, приведенной в [1]. В ходе этих работ было установлено, что повышение жесткости материала резонирующих участков не дает стабильных результатов, неэффективно и механическое демпфирование диффузора и гофра жидкими вязкими жидкостями (глицерин, касторовое масло).

Нанесение герлена на воротник диффузора по приведенной в [1] методике устраняет резонансы воротника, но почти не влияет на локальные резонансы сегментов гофра и участков диффузора. Локальные резонансы гофра и диффузора подавляются пропиткой "пораженных" участков раствором герлена в бензине.

Автором отработана и предлагается читателям следующая методика доработки головок, позволяющая получить хорошие и стабильные результаты.

Прежде всего необходимо приготовить растворы герлена в бензине двух консистенций № 1 и № 2. После опускания кисточки а раствор № 1 с нее должны отрываться густые капли. Раствор № 2 - вдвое разбавленный раствор № 1. Затем через окна в диффузородержателе с помощью тонкой кисточки следует промазать зазор между воротником и диффузородержателем раствором № 1. Когда раствор высохнет, повторить операцию. Затем на тыльную и внешнюю стороны диффузора и гофра нужно нанести раствор № 2 так, чтобы диффузор им полностью пропитался, но на его поверхности не было наплывов. После его высыхания на гофр и примыкающую к нему часть диффузора с обеих сторон наносят тонкий слой раствора № 1 шириной 2...3 см (каплю раствора "растягивают" по поверхности, как при крашении).

Параметры головки можно измерять только на следующий день после доработки.

По приведенной методике были доработаны головки 2ГД-40, ЗГД-42, ЗГД-38, 4ГД-53, 4ГД-8. У трех первых типов головок существенно уменьшилась неравномерность АЧХ излучения и диаграмм направленности в диапазоне 500...6 000 Гц, а на их переходных характеристиках практически исчезли паразитные выбросы (рис. 1, г). У двух последних эффект доработки выражен слабее (из-за повышенной толщины и жесткости гофра и периферийных участков диффузора), но также весьма ощутим.

Влияние механического демпфирования диффузора на параметры головок было проверено на примере доработки 18 головок 2ГД-40 (ЗГДШ-2). Перед доработкой у шести из них прослушивались посторонние призвуки при подаче на них синусоидального сигнала мощностью 1 Вт. Призвук прослушивался на одной или двух дискретных частотах в диапазоне 600...1500 Гц. Источниками призвуков в пяти случаях оказались сегменты гофра, расположенные по большой оси диффузора, а в одном - воротник. Еще у четырех головок призвуки появились при подведении к ним сигнала мощностью 3 Вт (источник - воротник). Все головки имели изрезанные АЧХ излучения и диаграммы направленности, на их переходных характеристиках наблюдались паразитные выбросы (рис. 1,в).

После доработки головок их АЧХ излучения стали более гладкими. На рис. 2 показана зона разброса, в которую уложились АЧХ излучения всех 18 головок (характеристики нормировались относительно значений на частоте 250 Гц).

При подаче на доработанные головки синусоидального сигнала мощностью 8 Вт в диапазоне частот выше 500 Гц посторонних призвуков не было обнаружено ни у одной головки, что свидетельствует о значительном снижении нелинейных искажений, вносимых диффузором.

Благодаря высокой повторяемости формы АЧХ излучения доработанных головок появляется возможность дальнейшего ее выравнивания во всем диапазоне воспроизводимых частот с помощью коррекции АЧХ усилителя. Принципиальная схема корректора с АЧХ, показанной на рис. 2 (кривая 1), приведена на рис. 3.

При подключении любой из 18 доработанных головок к скорректированному усилителю неравномерность их АЧХ излучения в диапазоне 150... 12000 Гц не превышала ±3 дБ, а на частоте 18 кГц у некоторых головок наблюдался спад не более -6дБ. Типовая АЧХ излучения головки с корректором приведена на рис. 4, а ее типовая переходная характеристика - на рис. 1, д.

АЧХ корректора имеет значительный подъем на высших частотах, однако это не приводит к заметному уменьшению динамического диапазона УМЗЧ, так как амплитуда высокочастотных составляющих в спектре музыкального сигнала невелика. В ряде случаев можно ограничиться коррекцией АЧХ излучения головки до частоты 14...16 кГц, тогда подъем в АЧХ корректора на высшей рабочей частоте будет значительно ниже.

Этот же корректор можно использовать и для коррекции АЧХ головок ЗГД-42, ЗГД-38 и 4ГД-53 (автором было доработано по две головки каждого из перечисленных типов, АЧХ всех доработанных головок уложились в приведенную на рис. 2 зону разброса).

Описанная выше доработка влияет и на другие параметры головок: повышается на 5...10 % собственная резонансная частота, снижается на 20... 40 % акустическая добротность (при этом полная добротность остается практически неизменной), за счет незначительного увеличения массы диффузора на 1...2 дБ снижается отдача, значительно повышается механическая прочность диффузора и гофра.

Хочется обратить внимание радиолюбителей на тот факт, что снижение чувствительности головки на 1 ...2 дБ эквивалентно уменьшению ее КПД на 20...37 %. Это накладывает определенные ограничения на применимость указанной выше доработки: в конструкциях, где нет запаса УМЗЧ по мощности, а также там, где важна экономичность источника питания, следует ограничиться доработкой, рекомендованной в [1].

Следует также отметить, что корректор улучшает звучание головок, доработанных не только по данной методике и по методике [1], но даже и недоработанных головок. Во всех случаях заметно выравниваются АЧХ излучения головок, а при сравнительном прослушивании эксперты отмечают более приятное звучание головок с корректором (оно становилось "мягким", "сочным", более "мягко" в сравнении с высокочастотными головками воспроизводились высшие звуковые частоты).

Звучание доработанных головок заметно выигрывает при воспроизведении сигнала повышенной мощности, поэтому их можно рекомендовать для использования в стационарной аппаратуре, а также в двухполосных громкоговорителях в качестве среднечастотных и высокочастотных излучателей.

Автор сравнивал звучание громкоговорителя, в котором установлены две головки 2ГД-40 с разворотом в горизонтальной плоскости на 45°, и двухполосного громкоговорителя с головками 15ГД-11А и 10ГД-35. Всеми слушателями было отмечено, что качество звучания однополосного громкоговорителя не уступает двухполосному, а некоторые даже отдали предпочтение однополосному.

Метод улучшения параметров широкополосных головок посредством механического демпфирования материала диффузора весьма эффективен и применительно к высокочастотным головкам с бумажным диффузором (ЗГД-31, 2ГД-36 и 1ГД-3). Причем головки ЗГД-31 и 2ГД-36 вначале рекомендуется доработать по приведенной в [2] методике (войлок можно заменить полосками герлена). После разборки головки на внутреннюю поверхность гофра и прилегающую к нему часть диффузора шириной 1...1.5 см следует нанести два слоя раствора № 1, а после ее сборки аналогично обработать и наружную сторону диффузора. У головок 1 ГД-3 раствор рекомендуется наносить на внешний край диффузора шириной 3...4 мм.

Такая доработка высокочастотных головок сгладила их АЧХ излучения и переходные характеристики при сохранении прежней чувствительности, позволила значительно уменьшить акустическую добротность и вносимые диффузором нелинейные искажения в нижней части воспроизводимого ими диапазона частот (два последних фактора позволяют снизить требования к используемому совместно с высокочастотной головкой разделительному фильтру).

В заключение следует отметить, что полностью реализовать все преимущества, которые дает механическое демпфирование диффузора, гофра, воротника и центрирующей шайбы головки можно только в заводских условиях. Ведь благодаря значительному повышению механической прочности гофра и диффузора появляется возможность делать их более тонкими, что позволило бы сохранить или даже повысить чувствительность головок, снизить их резонансную частоту до 50... 80 Гц, а оптимизацией пропитки диффузоров сгладить их АЧХ излучения. Но реализовать указанные возможности можно лишь на стадии проектирования...

Литература:

  1. Шоров В. Улучшение головок громкоговорителей. Радио. 1986, № 4. с. 39-41.
  2. Макшаков С., Горев Ю. Усовершенствование головок ЗГД-31 -1300. - Радио, 1982, № 7, с. 44.

Автор: В.Жбанов

Смотрите другие статьи раздела Акустические системы.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Ощущение текстуры через экран гаджета 27.11.2025

Гаджеты научились передавать изображение и звук с впечатляющей реалистичностью, но тактильные ощущения по-прежнему остаются недоступными для полноценной цифровой симуляции. Именно поэтому инженеры и исследователи во всем мире стремятся создать технологии, которые позволят "почувствовать" виртуальный объект так же естественно, как и настоящий. Новая разработка специалистов Северо-Западного университета США стала одним из самых заметных шагов в этом направлении. Возглавлявшая исследование аспирантка Сильвия Тан (Sylvia Tan) подчеркивает, что прикосновение остается последним фундаментальным чувственным каналом, для которого пока нет зрелого цифрового аналога. По ее словам, если визуальные и звуковые интерфейсы давно обеспечивают высокую степень реалистичности, то осязание лишь начинает приближаться к этому уровню. В недавней публикации в журнале Science Advances Тан отмечает, что новая технология способна изменить само представление о взаимодействии человека с устройствами. Разработ ...>>

AirPods Pro с инфракрасными камерами 27.11.2025

Apple традиционно играет роль новатора, поэтому ожидания от следующего поколения AirPods Pro особенно высоки. Новая модель, над которой компания уже активно работает, должна не просто улучшить звук, но и расширить способы взаимодействия человека с цифровой средой. Одним из наиболее заметных нововведений станет появление чипа Apple H3. Сегодняшние AirPods Pro используют поколение H2, обеспечивающее высокую скорость обработки звука, однако переход к H3 обещает еще более точное шумоподавление и сокращение задержки при беспроводной передаче аудио. По данным источников, новая архитектура улучшит энергоэффективность, а также позволит чипу глубже интегрироваться с устройствами экосистемы Apple. Особенно это касается гарнитуры Vision Pro, которая получит более синхронную работу с будущими наушниками. Не менее интригующей выглядит вторая инновация - миниатюрные инфракрасные камеры, встроенные непосредственно в корпус AirPods. Специалисты предполагают, что эти сенсоры смогут фиксировать дв ...>>

ИИ нужно воспринимать как пользователя 26.11.2025

Искусственный интеллект постепенно перестает быть скрытым компонентом программных решений и выходит на передний план. Сегодня алгоритмы не просто помогают обрабатывать данные, но и активно участвуют в рабочих процессах, принимают решения, взаимодействуют с корпоративными сервисами и получают доступ к критически важной инфраструктуре. Такое расширение их возможностей заставляет специалистов по безопасности переосмыслить, что именно означает присутствие ИИ в цифровой среде. Президент по продуктам и технологиям Okta Рик Смит подчеркивает, что воспринимать ИИ исключительно как технологическую надстройку уже невозможно. По его словам, компании обязаны учитывать, что искусственные агенты становятся участниками процессов наравне с живыми сотрудниками, а значит, требуют аналогичных мер защиты. Он формулирует это предельно прямо: "Мы должны защищать клиентов не только от людей, но и от ИИ-агентов - относиться к ним как к пользователям". Однако многие организации продолжают рассматривать И ...>>

Случайная новость из Архива

3D-карты XFX Radeon R9 290 Double Dissipation 25.12.2013

Ассортимент XFX пополнили 3D-карты Radeon R9 290X Double Dissipation (R9-290X-EDFD) и Radeon R9 290 Double Dissipation (R9-290A-EDFD). Это первые модели серии Radeon R9 290 в исполнении XFX, отличающиеся от референсных образцов.

К общим чертам указанных моделей относится печатная плата и система охлаждения Double Dissipation. Конструкция системы охлаждения включает медные тепловые трубки, алюминиевый радиатор и пару 80-миллиметровых вентиляторов. Владельцев корпусов с окошками может заинтересовать наличие на кожухе кулера светящегося логотипа компании.

Компоненты 3D-карт работают на референсных частотах: GPU R9 290X - на частоте 1000 МГц, GPU R9 290 - на частоте 947 МГц, память GDDR5 в обоих случаях - на эффективной частоте 5,0 ГГц. Объем памяти равен 4 ГБ, ширина шины памяти - 512 разрядов.

Компоненты 3D-карт серии XFX Radeon R9 290 Double Dissipation работают на референсных частотах. Для подключения к устройствам отображения есть два выхода DVI и по одному выходу HDMI и DisplayPort.

Другие интересные новости:

▪ Будущие математики хорошо сочиняют

▪ Система получения водорода из водопроводной воды без электролиза

▪ Использование костюмов со съемок фильма для исследований заболеваний

▪ Новые светодиоды CREE

▪ Старое сердце омоложено стволовыми клетками

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Электрику. ПУЭ. Подборка статей

▪ статья Я царь, я раб, я червь, я бог! Крылатое выражение

▪ статья Для чего у кукурузы шелковая прядь? Подробный ответ

▪ статья Зопник колючий. Легенды, выращивание, способы применения

▪ статья КВ преобразователь. Энциклопедия радиоэлектроники и электротехники

▪ статья Нормы испытаний электрооборудования и аппаратов электроустановок потребителей. Трансформаторы тока. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025