Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Измерение чувствительности радиоприемников с магнитной антенной. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Радиоприем

Комментарии к статье Комментарии к статье

Магнитные антенны широко применяются в радиоприемных устройствах для приема сигналов в ДВ, СВ и реже KB диапазонах. Для измерения чувствительности в точке расположения антенны радиоприемника с помощью известной методики создают электромагнитное поле известной напряженности. В статье проведен анализ этой методики и приведены рекомендации по ее усовершенствованию.

Чувствительность радиоприемника - такая величина входного сигнала, при которой на его выходе создается определенное отношение сигнал/шум. При измерении чувствительности по напряжению вход радиоприемника подключают к генератору сигналов через эквивалент антенны - электрическую цепь, имитирующую параметры внешней антенны. Для радиоприемников с магнитной антенной проводят измерения чувствительности по полю, но в технической литературе этому вопросу уделяется очень мало внимания. Обычно все сводится к ссылке на якобы хорошо известные методики [1-3], суть которых заключается в создании заданной напряженности магнитного поля с помощью рамки с током, подключенной к измерительному генератору. Изменяя сигнал генератора с учетом коэффициента преобразования рамки, находят напряженность поля, при которой выходной сигнал радиоприемника имеет требуемые параметры.

Ознакомление с источниками [1-3] показало, что имеется в виду одна и та же методика, в которой применена одновитковая рамка квадратной формы со стороной 380 мм, выполненная из медной трубки диаметром 3...5 мм. Ее через резистор сопротивлением 80 Ом подключают непосредственно к выходу генератора сигналов. Середину магнитной антенны радиоприемника располагают на расстоянии 1 м от центра рамки так, чтобы ось антенны была перпендикулярна плоскости рамки. При этом напряженность поля (мВ/м) в точке расположения магнитной антенны численно равна выходному напряжению генератора сигналов (мВ).

Применение этой методики при использовании современных генераторов ВЧ сигналов привело к удручающим результатам - измеренная чувствительность радиоприемников оказалась хуже ожидаемой примерно в десять раз. Более подробное изучение этой ситуации показало, что данная методика была разработана для случая использования генератора ГСС-6, в котором при отключении выносного аттенюатора выходной сигнал в десять раз больше показаний его аттенюатора (выносной аттенюатор имеет коэффициенты передачи 10, 1 и 0,1). Следовательно, напряжение на рамке оказывается в десять раз больше, а суммарный коэффициент преобразования сигнала генератора в электромагнитное поле равен 1 за счет того, что коэффициент преобразования измерительной рамки равен 0,1. Кроме того, выходное сопротивление генератора ГСС-6 в этом режиме равно 80 Ом, что и объясняет сопротивление добавочного резистора. Но современные генераторы ВЧ сигналов, как правило, имеют выходное сопротивление 50 Ом. Все это побудило заняться корректировкой известной методики проверки чувствительности приемников с магнитной антенной.

Измерение чувствительности радиоприемников с магнитной антенной

Начнем с самой магнитной рамки. Так называемая стандартная рамка состоит из одного витка квадратной формы со стороной 380 мм и применяется в диапазоне частот 0,15...1,6 МГц. Очевидно, что ее размеры много меньше длины волны Я., а расстояние от рамки до магнитной антенны больше ее размеров, поэтому в рабочем диапазоне частот она представляет собой элементарный магнитный излучатель.

Анализ поля элементарного магнитного излучателя [4] показывает, что на расстояниях r<λ,магнитное поле существует во всех направлениях от излучателя. Представляют интерес два направления (показаны на рисунке). Первое - перпендикулярное к плоскости рамки, при этом ось магнитной антенны должна быть направлена на центр рамки. Теоретически это направление в дальней зоне соответствует минимуму диаграммы направленности. Второе - в плоскости рамки, ось магнитной антенны при этом перпендикулярна ей. В дальней зоне это направление соответствует максимуму диаграммы направленности излучателя.

Используя выражения для напряженности магнитного поля по этим направлениям [4] и перейдя от магнитного момента вибратора к рамке с током [5], получим

где H1 Н2 - напряженность магнитной составляющей поля в точках 1 и 2 (см. рисунок) соответственно; S - площадь рамки, м2; I - ток в рамке, А; г - расстояние между центрами рамки и магнитной антенны, м; А,-длина волны сигнала, м.

Выражения (1), (2) позволяют рассчитать напряженность магнитного поля на любом расстоянии от рамки в двух направлениях. Можно показать, что при малых расстояниях {λ/2π) они совпадают с выражениями для магнитного поля рамки с постоянным током. Но напряженность электромагнитного поля принято измерять по напряженности его электрической составляющей. В сформировавшемся электромагнитном поле существует строгая зависимость между напряженностью электрической и магнитной составляющих. Чтобы найти напряженность электрической составляющей поля, которая соответствует известной магнитной составляющей, необходимо выражения (12) умножить на волновое сопротивление среды, для воздуха равное 120π . С учетом того, что на малых расстояниях 2πr<<λ эти выражения преобразуются:

где E1,E2 - напряженность электромагнитного поля в точках 1 и 2 (см. рисунок) соответственно.

Полученные выражения показывают, что напряженность электромагнитного поля вблизи рамки с током зависит от ее площади, значения тока, обратно пропорциональна кубу расстояния и не зависит от длины волны. При этом напряженность поля в первом направлении в два раза больше, чем во втором. Этим, в частности, объясняется тот факт, что в металлоискателях в большинстве случаев используется положение катушки, параллельное исследуемой поверхности.

Используя выражения (3), (4), можно рассчитать напряженность поля для рамки любых приемлемых размеров при известном токе и расстоянии. Однако удобнее связать напряженность поля с выходным сигналом генератора сигналов, к которому подключена рамка. Для задания тока последовательно с ней включают добавочный резистор. Обычно индуктивное сопротивление рамки пренебрежимо мало и его можно не учитывать. В этом случае ток в рамке без учета его индуктивного сопротивления равен

где U - выходное напряжение (по показаниям его аттенюатора) генератора, В; Rr - выходное сопротивление генератора, Ом; Rд- сопротивление добавочного резистора, Ом.

В итоге получены выражения

где К1 К2 - коэффициент преобразования напряжения сигнала генератора в напряженность электромагнитного поля при положении приемной антенны в точках 1 и 2 (см. рисунок) соответственно.

Выражения (5), (6) позволяют рассчитать коэффициент преобразования выходного сигнала генератора в значение напряженности электромагнитного поля либо определить площадь рамки или расстояние до нее для заданного значения коэффициента преобразования. В соответствии с ними в известной методике коэффициент преобразования для квадратной рамки со стороной 380 мм, генератора с выходным сопротивлением 80 Ом и добавочным резистором с таким же сопротивлением дает значение 0,108 при расстоянии 1 м. Очевидно, что в этой методике рамка была рассчитана на коэффициент преобразования 0,1. Небольшая погрешность, скорее всего, вызвана округлением размеров рамки в сторону увеличения и для измерения чувствительности не имеет существенного значения.

Для современных генераторов сигналов с выходным сопротивлением 50 Ом с такой рамкой при сопротивлении добавочного резистора 80 Ом коэффициент преобразования K1 = 0,133, а с добавочным резистором 51 Ом К1 = 0,172, что неудобно для практического использования.

Размеры рамки (ее площадь) при коэффициенте преобразования К, = 1 можно определить из выражения (5). Для r = 1 м, Rr = 50 Ом, Rд = 51 Ом площадь должна составлять 0,84 м2. Это соответствует квадратной рамке со стороной около 0,917 м или круглой диаметром 1,035 м. Но ее индуктивность, в зависимости от примененного диаметра провода, будет 4...4,5 мГн, что приведет к заметной зависимости тока в рамке от частоты сигнала на частотах свыше 1 МГц. Кроме того, такие размеры становятся соизмеримыми с расстоянием до антенны, из-за чего формулы, полученные для элементарного магнитного излучателя, становятся не применимыми.

Удобнее использовать коэффициент преобразования К1 =0,1, что позволит применить сравнительно небольшую рамку площадью 0,085 м2 - это соответствует квадратной рамке со стороной 291 мм или круглой диаметром 328 мм. При диаметре проводника 3 мм ее индуктивность - около 1 мГн. Для таких рамок при добавочном резисторе 51 Ом выходной сигнал генератора, равный 15 мВ, будет соответствовать напряженности поля 1,5 мВ/м на расстоянии 1 м.

Учет влияния индуктивности рамки показывает, что с ее помощью можно проводить измерение чувствительности радиоприемников с магнитной антенной до частоты 8 МГц, на которой напряженность поля уменьшится примерно на 9 %.

На более высоких частотах можно применить рамку площадью 84,17 см2 (что соответствует квадрату со стороной 92 мм или кругу диаметром 104 мм), выполненную из медной трубки или проволоки диаметром 3 мм С такой рамкой и добавочным резистором 51 Ом коэффициент преобразования составит К, = 0,01, поэтому для создания поля напряженностью 1,5 мВ/м на расстоянии 1 м потребуется выходной сигнал генератора 150 мВ. Измерение чувствительности можно проводить до частоты 30 МГц, на которой напряженность поля уменьшится примерно на 8 %. Эта же рамка обеспечит коэффициент преобразования К, =0,1 на расстоянии 465 мм, однако в таком случае потребуется высокая точность установки расстояния между рамкой и антенной.

Точность установки этого расстояния влияет на погрешность измерений. Так, при расстоянии 1 м погрешность ±3,33 см приводит к погрешности измерения ±10%. На расстоянии 465 мм такая же погрешность измерения будет при точности установки ±1,55 см.

Круглая и квадратная рамки эквивалентны, можно также применять рамки другой формы, например треугольной, важно, чтобы их площадь в точности равнялась требуемой. Поэтому с конструктивной точки зрения удобнее применить именно квадратную рамку, так как в этом случае проще получить заданную площадь.

Все приведенные примеры справедливы для случая, когда ось магнитной антенны расположена на перпендикуляре к плоскости рамки, проведенным через ее центр (положение 1, см. рисунок). Но для измерения чувствительности можно применить и другое направление (положение 2). В соответствии с выражением (6) в этом положении коэффициент преобразования уменьшится ровно в два раза. Поэтому для создания требуемой напряженности поля при прочих равных условиях необходимо в два раза увеличивать сигнал генератора либо уменьшить расстояние до центра рамки в раза. Но расстояние менее 0,5 м применять не рекомендуется, поскольку кубическая зависимость сильно увеличивает погрешность измерения от неточности установки расстояния до антенны. К тому же, когда расстояние до рамки становится соизмеримым с ее размерами, приведенные выражения дают завышенное значение напряженности электромагнитного поля, так как излучатель уже не может рассматриваться как точечный.

Однако второе положение может быть удобным с точки зрения компактности рабочего места, поскольку рамку можно расположить, например, над рабочим столом. Но во всех случаях важно, чтобы в зоне измерений не было крупных металлических предметов, способных заметно исказить поле.

Литература

  1. Левитин Е. А., Левитин Л. Е. Радиовещательные приемники. Справочник. - М.: Энергия, 1967, с. 347.
  2. Белов Н. Ф., Дрызго Е. В. Справочник по транзисторным радиоприемникам. - М.: Сов. Радио, 1973, ч. 2, с. 663-691.
  3. Бродский М. А. Справочник радиомеханика. - Минск: Высш. школа, 1974, с. 115.
  4. Айзенберг Г. 3., Ямпольский В. Г., Терешин О. Н. Антенны УКВ, ч. 1. - М.: Связь, 1977, с. 86.
  5. Марков Г.Т., Сазонов Д.М. Антенны. - М.: Энергия, 1975, с. 34, формула (1-52).

Автор: Д. Алхимов, г. Смоленск; Публикация: radioradar.net

Смотрите другие статьи раздела Радиоприем.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Зеленый чай и метаболическое здоровье 23.01.2026

Зеленый чай на протяжении многих лет остается объектом пристального внимания ученых, поскольку его регулярно связывают с профилактикой различных хронических заболеваний. Этот напиток давно вышел за рамки повседневной традиции и стал предметом серьезных биомедицинских исследований. Недавняя научная работа показала, что полезные свойства зеленого чая могут быть гораздо шире, чем считалось ранее, особенно в контексте обмена веществ и здоровья кишечника. В рамках исследования ученые наблюдали за 40 добровольцами, среди которых 21 человек имел диагностированный метаболический синдром, а 19 участников были здоровыми взрослыми. В течение 28 дней одной группе испытуемых давали экстракт зеленого чая, тогда как другая группа получала плацебо. Такой подход позволил сравнить влияние активных компонентов напитка на разные показатели здоровья. Результаты показали, что у участников, принимавших экстракт зеленого чая, уровень глюкозы в крови оказался ниже, чем у тех, кто получал плацебо. Этот эф ...>>

Наушники Sony LinkBuds Clip 23.01.2026

Sony представила новую модель беспроводных наушников - LinkBuds Clip. Они заметно отличаются от классических устройств. Это открытые наушники с клипсой, которые не вставляются в ушной канал и не охватывают ухо. Вместо этого они фиксируются на ухе, как кафф или ювелирное украшение, позволяя слушать музыку, не отсекая окружающие звуки. Это открытые наушники с клипсовым креплением, которые не вставляются в ушной канал и не охватывают ухо целиком. Они фиксируются на внешней части уха, напоминая кафф или декоративный аксессуар, и позволяют слушать музыку, не перекрывая естественные звуки окружающей среды. В основе модели лежит концепция open-ear, благодаря которой пользователь одновременно слышит воспроизводимый контент и то, что происходит вокруг - шум транспорта, объявления или речь собеседников. По утверждению Sony, такая "всегда открытая" конструкция особенно удобна для повседневного длительного использования, поскольку отпадает необходимость каждый раз ставить воспроизведение на ...>>

Луна поглощает воздух нашей планеты 22.01.2026

Взаимодействие Земли и Луны оказывается не только гравитационным. Новые исследования показывают, что наш естественный спутник постепенно "поглощает" крошечные фрагменты атмосферы Земли, используя для этого солнечный ветер и магнитное поле нашей планеты. Этот процесс исследователи называют космическим каннибализмом. Еще во времена миссий "Аполлон" в 1970-х годах ученые обнаружили в лунном реголите необычные следы воды, углекислого газа, гелия и азота. Стало ясно, что часть этих веществ, включая ионы азота, попала на Луну из верхних слоев земной атмосферы. Долгое время считалось, что подобная передача могла происходить только до того, как Земля сформировала свое магнитное поле. Магнитосфера, как считалось, должна была защищать планету и блокировать утечку атмосферных частиц в космос. Новое моделирование показало, что это представление неверно. Ученые объединили данные лунных образцов с компьютерными моделями и выяснили, что поток ионов усиливается, когда Луна проходит через так ...>>

Случайная новость из Архива

Получение влаги из воздуха без затрат энергии 15.06.2025

Вода - один из важнейших ресурсов на планете, и поиск новых способов ее получения особенно актуален в условиях глобального изменения климата и растущей засухи. Традиционные методы сбора воды из воздуха часто требуют затрат энергии или высокой влажности, что ограничивает их эффективность и применение. Однако группа американских инженеров сделала значительный прорыв, разработав материал, способный извлекать воду из атмосферы без использования дополнительной энергии.

Команда исследователей из Пенсильванского университета совместно с учеными из Технического университета Мюнхена представила новый класс наноматериалов, которые используют явление капиллярной конденсации. Этот процесс заключается в том, что водяной пар превращается в жидкость внутри крошечных пор материала, даже при невысокой влажности воздуха. Такое сочетание гидрофильных и гидрофобных элементов внутри наноструктуры позволяет собирать воду там, где традиционные методы оказываются бессильны.

В ходе экспериментов ученые исследовали смесь гидрофильных нанопор и гидрофобных полимеров, и их удивил самопроизвольный сбор капель воды на поверхности материала. Дальнейший анализ подтвердил, что уникальное взаимодействие между водолюбивыми и водоотталкивающими компонентами обеспечивает стабильное удержание воды. Примечательно, что в отличие от привычных методов, где требуется либо охлаждение воздуха, либо высокая влажность, новая технология обходится без внешних затрат энергии.

Интересным открытием стало то, что увеличение толщины материала напрямую влияет на объем собранной воды. Это свидетельствует о том, что капли формируются внутри пор и затем выходят наружу, а не образуются просто на поверхности. Более того, ученые зафиксировали, что капли воды сохраняются длительное время и не испаряются так быстро, как можно было ожидать исходя из их размеров и формы.

Новый наноматериал изготовлен из доступных и относительно недорогих полимеров и наночастиц, что делает его перспективным для массового производства. По словам разработчиков, его можно использовать в пассивных системах добычи воды, особенно в засушливых районах, где доступ к воде крайне ограничен. Помимо этого, материал пригоден для создания "умных" покрытий, способных охлаждать электронику и другие устройства без дополнительных энергозатрат.

Это открытие может стать ключевым элементом в решении глобальной проблемы дефицита воды и улучшении энергетической эффективности систем охлаждения. Использование капиллярной конденсации на базе наноматериалов открывает перспективу создания экологически безопасных и экономичных технологий, которые помогут обеспечить водой труднодоступные регионы и снизить нагрузку на природные ресурсы.

Разработка американских и немецких ученых демонстрирует, что инновации в области материаловедения способны не только изменить способы добычи воды, но и значительно повысить устойчивость человечества к климатическим вызовам, предлагая практичные и энергоэффективные решения.

Другие интересные новости:

▪ Память мешает различать цвета

▪ Прозрачные кузовные стойки

▪ Телевизоры LG перестанут следить за пользователями

▪ Монитор RCA Evolution Premium (M27PG135F)

▪ Математическое закономерное распределение нейронов в человеческом мозге

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Медицина. Подборка статей

▪ статья Ипокрена. Крылатое выражение

▪ статья Сколько дерева мы потребляем в настоящее время? Подробный ответ

▪ статья Боярышник гладкий. Легенды, выращивание, способы применения

▪ статья Перестраиваемый генератор прямоугольных импульсов. Энциклопедия радиоэлектроники и электротехники

▪ статья Секрет мыльных пузырей. Физический эксперимент

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2026