Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Блок управления мощностью на солнечных элементах. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Альтернативные источники энергии

Комментарии к статье Комментарии к статье

Существует мнение, что солнечные батареи смогут когда-нибудь существенно дополнить и даже вытеснить традиционные источники энергии. Тогда настанет время реальной проверки возможностей солнечных элементов.

В данной главе мы немного заглянем в будущее и проверим способность фотоэлектричества приносить реальную пользу. Больше никаких сувениров, никаких игрушек, только скромная, обыденная работа.

В этой главе читатель ожидает узнать, как солнечная энергия будет помогать нам в ежедневной домашней работе, включающей в себя приведение в действие мощной пилы, комнатного освещения, подачу электроэнергии на различные устройства развлечения и многое другое. Таково будущее солнечной энергетики.

Однако подробности подобных систем в этой книге описаны не будут. Вместо этого будет показано, как можно осуществить управление уже готовой фотоэлектрической системой. Этой цели служит блок управления мощностью.

Блок управления мощностью

Данный блок предназначен для полного контроля ресурса солнечных батарей. С пульта этого блока можно легко осуществлять управление электроснабжением до четырех потребителей энергии. Кроме того, для защиты каждого потребителя имеется плавкий предохранитель.

Но это еще не все. Поскольку работоспособность системы безусловно зависит от степени заряженности свинцово-кислотных батарей, в данное устройство непосредственно встроен блок контроля состояния батареи. Взглянув на пульт управления, можно сразу оценить рабочее состояние источника энергии. И если оно неудовлетворительно, запас энергии достигает опасного уровня, подается предупреждающий сигнал (зуммер).

Чего еще можно желать от контрольно-управляющего устройства?

Контрольно-управляющее устройство распределения мощности

Основная задача блока управления мощностью заключается в распределении фотоэлектрической энергии между различными частями системы. Он также предназначен для сохранения энергии про запас.

Рассмотрим, например, работу преобразователя напряжения, который преобразует постоянное напряжение 12 В, генерируемое солнечными батареями, в переменное напряжение 110 В. Такое напряжение необходимо для работы определенных устройств, например электропилы.

Но преобразователь напряжения потребляет энергию постоянно, даже когда к нему не подключено никакой нагрузки. При этом бесполезно расходуется энергия, которую можно было бы потратить с большей пользой. Следовательно, в блоке управления мощностью необходимо предусмотреть тумблер для отключения инвертора.

В этом блоке предусмотрена возможность отключения любой нагрузки, которая снабжена своим тумблером. Чтобы отключить любую нагрузку от источника энергии, достаточно просто "щелкнуть" выключателем.

Рассматривая рис. 1, можно обнаружить, что блок имеет четыре отдельные схемы, каждая из которых снабжена тумблером, установленным на лицевой панели. Над каждым тумблером имеется небольшой СД. Когда схема запитана, светится соответствующий СД, информируя о том, что энергия подводится к выбранной нагрузке.

Блок управления мощностью на солнечных элементах
Рис.1

Однако контроля за подводом энергии к нагрузке недостаточно. В целях безопасности необходимо следить за силой тока в цепи.

Именно поэтому в качестве выключателей используются не обычные тумблеры, а специальные прерыватели. В отличие от обычных прерывателей, которые быстро изнашиваются при использовании их в качестве выключателей, эти прерыватели предназначены для работы в качестве как ограничителя, так и в качестве выключателя.

Устройство контроля напряжения и степени заряженности аккумуляторных батарей

Блок управления содержит устройство контроля напряжения, который указывает на состояние (степень заряженности) батарей.

Как было показано в гл. 6, напряжение свинцово-кислотной батареи аккумуляторов зависит от заряда, хранящегося в ее элементах. Наглядно это видно из рис. 2, на котором показана зависимость между напряжением и степенью заряженности батареи. Из зависимости следует, что полностью заряженная батарея имеет напряжение 13,2 В, а полностью разряженная - 10,5 В. Для определения степени заряженности аккумуляторных элементов необходимо измерить напряжение на батарее и сравнить его со значением на рис. 2.

Блок управления мощностью на солнечных элементах
Рис.2

Это и делает устройство контроля заряженности батарей. Однако в нем вместо измерительного прибора для индикации напряжения используется световая полоска. Напряжение контролируемой батареи высвечивается 10 светодиодами. Шкала считывания построена так, что каждый последующий диод зажигается при увеличении напряжения на 0,5 В. Если горит первый диод, напряжение составляет 10,5 В, если второй - 11 В, если третий - 11,5 В и т. д. вплоть до 15 В.

Блок индикации выполнен на отдельной интегральной микросхеме LM3914. Внутри ее имеется ряд компараторов, сравнивающих входное напряжение с опорным напряжением источника и включающих лампочку, соответствующую соотношению упомянутых напряжений.

Принцип работы схемы индикации ясен из рис. 3. Резисторы R1, R2, R3 образуют делитель напряжения, который позволяет снизить входное напряжение 12 В (от батареи) до 2,5 В, необходимых для работы микросхемы IC1. Масштаб преобразования напряжения микросхемой IC1 устанавливается переменным резистором VR1. Теперь входное напряжение от батареи поступает на компараторы внутри IC1, которые выносят решение относительно его истинного значения. Это значение затем индицируется одним из 10 светодиодов.

Блок управления мощностью на солнечных элементах
Рис.3

Состояние батареи отображается двояко с помощью цветокодирования светодиодов. Например, 13-вольтовый диод имеет зеленый цвет. Считается, что батарея с напряжением 12-14 В работоспособна, следовательно, диод имеет зеленый цвет.

Однако если напряжение батареи снижается до 11,5 В, а затем до 11 В, то заряд истощается. Эти диоды имеют желтый цвет, индицирующий наличие проблемы, с которой можно столкнуться в дальнейшем.

Последний 10,5-вольтовый диод имеет красный цвет. Если напряжение аккумуляторной батареи упало до этого уровня, то в ней мало (или вообще не имеется) запасенной энергии. Простого взгляда достаточно, чтобы узнать не только точное значение напряжения батареи, но и ее зарядовое состояние (по изменению цвета). В табл. 1 приводится список светодиодов с указанием их цвета и отображаемой ими информации.

Таблица 1. Информация, отображаемая светодиодами

Блок управления мощностью на солнечных элементах

Устройство контроля заряда аккумуляторной батареи

Устройство контроля напряжения батареи позволяет также проверить состояние цепи заряда. В нормальных условиях зарядное напряжение не должно превышать 15,5 В, иначе батарея может выйти из строя.

Поэтому для устройства 15-вольтового индикатора зарезервирован красный свет. Когда он загорается, это не обязательно означает, что что-то произошло, просто по какой-то причине зарядное напряжение чрезмерно велико.

Тревожная сигнализация

И это не все! Знаете ли вы о том, что, допуская заряд батареи ниже 10,5 В, можно повредить ее. Произойдет сульфатация пластин, и крайне важно, чтобы этого не случилось.

В схему введена сигнализация. Если по какой-либо причине напряжение в системе упадет ниже 10,5 В, зазвучит сигнал тревоги. Я подключил к сигнализации также 15-вольтовый вывод индикатора, чтобы сигнал подавался и в случае перезаряда батареи.

Управление сигналом осуществляется двумя логическими элементами микросхемы IC2. Питание на микросхему подается с диода D1

Конструкция

Устройство контроля напряжения батареи выполнено с применением печатного монтажа. Рисунок печатной платы представлен на рис. 4. Не забудьте о том, что в списке деталей приведен адрес поставщика готовой печатной платы для этого устройства.

Блок управления мощностью на солнечных элементах
Рис.4

Элементы схемы размещаются согласно рис. 5. Припаивая радиодетали, обратите внимание на следующие моменты.

Блок управления мощностью на солнечных элементах
Рис.5

Во-первых, на присоединение светодиодов. Необходимо соблюдать полярность, не всегда легко определить, какой вывод диода является анодом, а какой - катодом. Если подключить светодиоды в обратной полярности, они не будут светиться. Необходимо также перед пайкой обратить внимание на соответствие цвета свечения светодиодов и не укорачивать их выводов.

Во-вторых, на соблюдение полярности включения микросхемы IC1, поскольку ошибочное включение приведет к выходу ее из строя. Микросхема - это чип КМОП-структуры, который весьма чувствителен к электростатическому заряду, поэтому необходимо обратить внимание и на этот момент.

Автоматические прерыватели размещаются на лицевой панели алюминиевого корпуса. Для прерывателей, упомянутых в списке деталей, необходимы отверстия диаметром 10 мм.

Необходимо выбрать прерыватели для системы, которые постоянно пропускают необходимый ток, но срабатывают при перегрузке. Нельзя использовать прерыватели со слишком большим порогом срабатывания.

Светодиоды размещаются точно над прерывателями. Под их хромированный корпус-держатель высверливаются отверстия диаметром 6 мм. Монтажная схема всего блока управления мощностью приведена на рис. 6.

Блок управления мощностью на солнечных элементах
Рис.6

Последовательно с четырьмя светодиодами включены резисторы. Их просто припаивают между катодами светодиодов и отключаемыми выводами прерывателей.

Для присоединения внешних устройств на задней стенке корпуса размещается переходная колодка. К внешним устройствам относятся солнечная батарея и коммутируемые приборы. Необходимо убедиться в том, что в цепях электропитания используется провод достаточного диаметра. Проводники, идущие к устройству контроля напряжения батареи, могут быть меньшего диаметра.

Устройство контроля напряжения батареи размещается под прерывателем. Печатная плата крепится на пластмассовых стойках параллельно дну корпуса.

Выводы светодиодов сгибаются так, чтобы светодиоды выступали за край платы, находясь в одной плоскости. Затем светодиоды выдвигают из щели, прорезанной под прерывателями.

Если имеется желание, сделаем надписи под выключателями, можно использовать для этой цели переводной шрифт.

Проверка и настройка

Проверить устройство достаточно просто, необходимо лишь присоединить ко входу 12-вольтовую батарею. Для проверки подключать больше ничего не надо.

Нажмите на прерыватель и проконтролируйте срабатывание по светодиоду. Светодиод должен светиться при включенном прерывателе и гаснуть при отключенном.

Устройство контроля напряжения батареи необходимо предварительно откалибровать. Подключив вольтметр ко входу батареи, необходимо измерить ее напряжение. Затем, вращая переменный резистор VR1, добиваются свечения светодиода, соответствующего измеренному напряжению. На этом калибровка заканчивается

Автор: Байерс Т.

Смотрите другие статьи раздела Альтернативные источники энергии.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Алкоголь может привести к слобоумию 29.11.2025

Проблема влияния алкоголя на стареющий мозг давно вызывает интерес как у врачей, так и у исследователей когнитивного старения. В последние годы стало очевидно, что границы "безопасного" употребления спиртного размываются, и новое крупное исследование, проведенное международной группой ученых, вновь указывает на это. Работы Оксфордского университета, выполненные совместно с исследователями из Йельского и Кембриджского университетов, показывают: даже небольшие дозы алкоголя способны ускорять когнитивный спад. Команда проанализировала данные более чем 500 тысяч участников из британского биобанка и американской Программы миллионов ветеранов. Дополнительно был выполнен метаанализ сорока пяти исследований, в общей сложности включавших сведения о 2,4 миллиона человек. Такой масштаб позволил оценить не только прямую связь между употреблением спиртного и развитием деменции, но и влияние генетической предрасположенности. Один из наиболее тревожных результатов касается людей с повышенным ге ...>>

Искусственный мозговой матрикс 29.11.2025

Биоинженерия стремительно выходит за пределы традиционной работы с клетками и биоматериалами. Ученые пытаются не просто выращивать ткани, но и воссоздавать механизмы, управляющие жизнью клеток в реальном организме. Одним из наиболее амбициозных направлений стала разработка искусственных матриксов, которые могли бы подменить природную среду и дать исследователям возможность изучать работу мозга без участия биологических компонентов. На этом фоне работа специалистов Калифорнийского университета в Риверсайде представляет собой особенно заметный шаг вперед. В центре их исследования - платформа BIPORES, созданная полностью из синтетических веществ. Цель проекта заключалась в попытке смоделировать сложную, многослойную структуру внеклеточного матрикса, который в настоящем мозге обеспечивает питание, связь и организацию нервных клеток. При этом разработчики сознательно отказались от каких-либо белков, традиционно необходимых для прикрепления клеток, таких как ламинин или фибрин. Это решени ...>>

Ранняя Вселенная не была ледяной 28.11.2025

Понимание того, как формировались первые структуры во Вселенной, требует взгляда в эпохи, в которых не существовало ни звезд, ни галактик, ни привычных нам источников света. Научные группы по всему миру пытаются восстановить картину тех времен при помощи слабейших радиосигналов, оставшихся от водорода, который наполнял космос вскоре после Большого взрыва. Новые результаты, полученные на радиотелескопе Murchison Widefield Array в Австралии, неожиданным образом меняют представление об этих ранних этапах. Сразу после Большого взрыва, произошедшего около 13,8 миллиарда лет назад, пространство стремительно расширялось и остывало. Через несколько сотен тысяч лет образовался нейтральный водород, и началась так называемая эпоха тьмы, когда Вселенная была лишена источников излучения. Лишь значительно позже гравитация собрала газ в плотные области, где зародились первые звезды и ранние черные дыры, а их интенсивное излучение привело к реионизации водорода и окончательному появлению света. ...>>

Случайная новость из Архива

Микро-сегвей Ninebot mini 22.10.2015

Ассортимент компании Xiaomi уже давно простирается далеко за пределы сегмента смартфонов, планшетов и вообще потребительской электроники. Конечно, далеко не все устройства, которые представляет китайский гигант, являются его собственной разработкой. Порой это продукция сторонних производителей, которую компания решает продвигать под собственным брендом.

Именно к таковым относится очередная новинка - сегвей Ninebot mini. Напомним, компания Segway, чье имя стало нарицательным для двухколесного транспорта определенной конструкции, недавно была приобретена китайской Ninebot, одним из основных акционеров которой является Xiaomi. В данном случае последняя, скорее, просто помогает Ninebot продвигать и реализовывать продукцию.

Цена Ninebot mini - $315, это во много раз дешевле, нежели оригинальные сегвеи. "Кузов" аппарата создан из прочного магниевого сплава. Кроме прочего, это позволило добиться минимальной массы - 12,8 кг. В движение этот "самокат" приводит электромотор. Его достаточно для того, чтобы Ninebot mini развивал скорость до 16 км/ч. На одной зарядке сегвей способен проехать примерно 22 км.

Конечно, не обошлось и без умной электроники, к которой, судя по всему, приложила руку Xiaomi. Ninebot mini способен сопрягаться со смартфоном, а фирменное приложение предоставит пользователю разнообразную информацию, вроде скорости, пройденного расстояния и так далее. Более того, сегвею можно будет обновить прошивку.

Другие интересные новости:

▪ Комбинированная винтовка-удочка

▪ Титанический гиперион

▪ Йогуртовые бактерии побеждают лекарственноустойчивых

▪ Океаны теряют кислород

▪ Засуха загрязняет воздух озоном

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Зарядные устройства, аккумуляторы, батарейки. Подборка статей

▪ статья Философия науки и техники. Конспект лекций

▪ статья Как самцы водомерок запугивают самок и принуждают их к спариванию? Подробный ответ

▪ статья Кизильник блестящий. Легенды, выращивание, способы применения

▪ статья Автоматический регулятор температуры холодильника. Энциклопедия радиоэлектроники и электротехники

▪ статья Тонкомпенсированный регулятор громкости на резисторе с одним отводом. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025