Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Сигнальный фонарик на солнечных элементах. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Альтернативные источники энергии

Комментарии к статье Комментарии к статье

Попадали ли вы в ситуацию, когда вам пригодилось бы любое устройство, предупреждающее об опасности, а его не было? Например, вы вырыли канаву вокруг цветника или перекопали газон весной и вдруг вспомнили, что вечером у вас гости. Может быть, вы строите бассейн или на въезде на ваш участок образовалась большая выбоина. Независимо от конкретной ситуации бывают моменты, когда требуется устройство, предупреждающее об опасности.

Цель предупреждающей системы - привлечь внимание; эффективнее всего внимание человека привлекают вспышки света, а не постоянно горящий свет, потому что человеческий глаз воспринимает их как движение (изменение). Всем нам хорошо известно, что зрение человека значительно более чувствительно к движущимся объектам, нежели к неподвижным.

Описанный в этой главе мигающий предупреждающий фонарик предназначен именно для привлечения внимания в случае какой-либо опасности.

Принцип работы схемы

Охранная схема построена с использованием одной интегральной микросхемы LM3909. Эта микросхема является уникальным генератором импульсов, который потребляет очень мало энергии и требует минимума дополнительных элементов. О простоте устройства мигающего фонарика можно судить по схеме на рис. 1, требующей лишь четыре навесных элемента.

Сигнальный фонарик на солнечных элементах
Рис.1

Микросхема по существу представляет собой генератор с отрицательным сопротивлением, период следования импульсов в котором определяется внутренними элементами и емкостью конденсатора C1. В момент включения питания конденсатор C1 начинает заряжаться. Скорость заряда и, следовательно, постоянная времени устанавливаются и контролируются с помощью микросхемы IC1. Когда напряжение на конденсаторе достигнет установленного уровня срабатывания, IC1 включается и разряжает конденсатор C1 на светодиод СД1.

При разряде емкости через диод ток протекает через базу транзистора Q1, который переходит в режим насыщения. Резистор R1 ограничивает разрядный ток конденсатора С1 и определяет постоянную времени разрядного цикла, которая в свою очередь определяет время открытого состояния транзистора. При большом сопротивлении резистора конденсатор разряжается медленнее и постоянная времени увеличивается, а при малом сопротивлении - уменьшается.

Последовательно с переключающим транзистором включена лампа, предупреждающая об опасности, следовательно, она светит, когда транзистор проводит ток.

Когда напряжение на конденсаторе упадет до установленного нижнего предела, микросхема IC1 переходит в исходное состояние и конденсатор С1 начинает снова заряжаться. Цикл работы повторяется.

Отношение длительностей включенного и выключенного состояний (скважность) определяется отношением R1/C1 Наша схема разработана так, что лампа включена в течение приблизительно 6% времени полного периода работы. Это соответствует примерно 15 вспышкам света за 1 мин.

Источник питания

Хотя схема фонарика питается от солнечной батареи, основной его целью является предупреждение об опасности в ночное время, когда наше зрение гораздо менее эффективно и вполне можно натолкнуться на какое-либо препятствие. Следовательно, необходимо запасти энергию в дневное время для последующего ее использования в ночное время.

Для этого были отобраны никель-кадмиевые аккумуляторы, которые предпочтительнее свинцово-кислотных благодаря наличию относительно постоянного напряжения разряда. Было бы очень некстати, если бы яркость света снижалась ночью по мере разряда аккумулятора. При использовании никель-кадмиевых аккумуляторов освещение остается ярким вплоть до глубокого разряда.

Всего для питания схемы потребуется пять никель-кадмиевых аккумуляторных элементов типоразмера АА с припаянными выводами, в каждом из которых может быть запасено 0,5 А-ч электроэнергии.

Элементы припаиваются друг к другу противоположными выводами: положительный вывод одного элемента припаивается к отрицательному следующего. Затем лист плотной бумаги, служащий в качестве корпуса, оборачивается вокруг батареи и все изделие заливается подходящим полимерным составом с целью надежной влагоизоляции.

Солнечная батарея

Никель-кадмиевые аккумуляторы заряжаются от солнечной батареи. Для данной конструкции выбраны серповидные элементы, получаемые при срезе сегментов круглого элемента диаметром 10 см, с целью придания ему квадратной формы. Выходной ток этих элементов лежит в пределах 50 - 80 мА, хотя встречаются элементы, развивающие ток 125 мА и более.

Основной задачей, решаемой данной конструкцией солнечной батареи, является поддержание никель-кадмиевых аккумуляторов в постоянно заряженном состоянии без перезарядки. Как было показано в гл. 10, никель-кадмиевые аккумуляторы легко выходят из строя при перезаряде.

Дисковые аккумуляторы, используемые в данной конструкции, Можно заряжать током 50 мА, не боясь повредить их. Таким образом, мы изготовим солнечную батарею, генерирующую ток около 50 мА.

Предупреждающий об опасности фонарик имеет малые габариты, поэтому лучше изготовить небольшую солнечную батарею. С этой целью следует отобрать серповидные элементы, развивающие ток 90 - 100 мА.

Разделите серповидные элементы пополам. Это легко проделать, резко нажав крестообразным лезвием ножа на участок вблизи прямолинейного края элемента. Исходные круглые элементы, от которых были отколоты серповидные элементы, получены из кристаллического материала, в котором линии скола перпендикулярны прямолинейным краям серповидных элементов. Если нажать на этот край, элемент расколется на две части. Размеры получаемых элементов определяются тем, в каком месте производится нажатие. Если вы нажмете посредине, получите два одинаковых элемента.

Как известно, разделение элемента на сегменты не разрушает его, а лишь уменьшает выходной ток. Следовательно, при разделении элемента пополам каждая половинка будет генерировать ток 45-50 мА.

Не обязательно делить элементы на части, можно использовать целые серповидные элементы, генерирующие ток только 50 мА. Для отбора таких элементов полезен тестер. При этом необходимо помнить, что слаботочные элементы займут больше места в батарее.

Соедините 14 элементов последовательно - и вы получите солнечную батарею. Разместите их на небольшой пластинке из пластика или стекла и загерметизируйте для предохранения от воздействия окружающей среды.

Блокирующий диод (D1) защищает аккумуляторы от разряда через солнечную батарею в ночное время. Он представляет собой германиевый диод с низким прямым напряжением порядка 0,3 В и максимальным током 200 мА.

Конструкция сигнального фонарика

Электронная схема изготавливается с применением печатного монтажа. Печатная плата приведена на рис. 2, размещение деталей - на рис. 3. В изготовлении нет ничего сложного, только тщательно соблюдайте полярности выводов всех полупроводниковых приборов и тщательно пропаивайте соединения.

Сигнальный фонарик на солнечных элементах
Рис.2

Сигнальный фонарик на солнечных элементах
Рис.3

Мигающую лампу необходимо поместить в какой-либо стеклянный баллон для защиты от воздействия внешней среды. Кроме того, стеклянный баллон способствует рассеиванию света лампы в широком диапазоне углов. Для этой цели прекрасно подойдет сферический рассеиватель, ранее используемый в габаритных огнях некоторых автомобилей. Накрытая подобным колпачком лампа видна со всех направлений.

Можно также поместить лампу между двумя линзами, такая конструкция обычно используется в оградительных фонарях на дорогах. Линзы необязательно должны быть круглыми, подойдет любая форма. Не составит особого труда защитить лампу в соответствии с приведенными рекомендациями.

Мне самому тем не менее специально потребовался небольшой сигнальный фонарик, который светил бы только в одном направлении. В результате поисков я обнаружил в продаже дешевый осветитель, точно отвечающий моим требованиям (см. подробнее список деталей). Он предназначался для использования в автомобиле и был оснащен магнитным держателем (очень удобно для закрепления на металлических поверхностях) и разъемом для подключения в гнездо прикуривателя на 12 В.

Чтобы использовать этот фонарик в качестве сигнального, первым делом нужно было обрезать соединительный привод с 12-воль- товым разъемом так, чтобы остался присоединенным отрезок провода длиной около 10 см. Сохраните при желании разъем прикуривателя и соединительный провод для будущих конструкций. Теперь удалите рукоятку для сматывания провода, отвинтив удерживающий ее винт.

Лампочка в этом фонарике рассчитана на 12 В и хорошо работать в нашей схеме не будет. Для доступа к лампочке отверните против часовой стрелки внешнее кольцо, удерживающее переднее стекло фонарика. Замените лампу на лампу № 50 и соберите фонарик.

Печатная плата, изображенная на рис. 2, специально сделана таких размеров, чтобы точно уместиться в выемке от 12-вольтового разъема.

Плата и все детали на ней точно подходят по размерам, кроме конденсатора С1, который необходимо расположить "лежа".

Наконец, припаяйте выводы лампы, аккумуляторной и солнечной батарей к соответствующим контактным площадкам платы. При окончательной сборке фонарик закрепляется на аккумуляторной батарее. Дополнительный вес батареи добавит фонарику устойчивость. Солнечная батарея, которая не крепится к фонарику, может располагаться в любом освещаемом солнцем месте.

Использование сигнального фонарика

Фонарик может не снабжаться тумблером для выключения его в дневное время. В этом нет необходимости. Мой опыт показывает, что свежезаряженного комплекта аккумуляторов вполне хватает на неделю работы фонарика. Совершенно разряженные никель-кадмиевые элементы полностью подзаряжаются за 10 солнечных часов, иными словами, за полтора дня работы солнечной батареи.

Если такой режим работы вас не удовлетворяет, следует увеличить размер солнечной батареи, чтобы она генерировала ток 17 мА, и сменить прежние аккумуляторные элементы на элементы с большей емкостью (типа С). В этом случае будет запасаться приблизительно в 3 раза больше энергии.

Область применения этого небольшого портативного фонарика почти не ограничена. Конечно, в голову тотчас приходят уже упомянутые применения: своевременное световое предупреждение о впадинах и ямах, трудноразличимых изгородях и незаметных препятствиях. Неплохо также установить сигнальные огни на лодки, пристани и высокие здания.

Если вы радиолюбитель, возможно, вы захотите закрепить мигающий фонарик со сферической крышкой на мачте вашей антенны. Домохозяйкам понравится использование подобного приспособления для предупреждения о только что натертых полах. Фонарик с магнитным держателем можно укрепить на крыше автомобиля, поставленного на стоянку на обочине шоссе.

А какая забавная получится благодаря такому фонарику маска с мерцающими глазами!

Автор: Байерс Т.

Смотрите другие статьи раздела Альтернативные источники энергии.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Ранняя Вселенная не была ледяной 28.11.2025

Понимание того, как формировались первые структуры во Вселенной, требует взгляда в эпохи, в которых не существовало ни звезд, ни галактик, ни привычных нам источников света. Научные группы по всему миру пытаются восстановить картину тех времен при помощи слабейших радиосигналов, оставшихся от водорода, который наполнял космос вскоре после Большого взрыва. Новые результаты, полученные на радиотелескопе Murchison Widefield Array в Австралии, неожиданным образом меняют представление об этих ранних этапах. Сразу после Большого взрыва, произошедшего около 13,8 миллиарда лет назад, пространство стремительно расширялось и остывало. Через несколько сотен тысяч лет образовался нейтральный водород, и началась так называемая эпоха тьмы, когда Вселенная была лишена источников излучения. Лишь значительно позже гравитация собрала газ в плотные области, где зародились первые звезды и ранние черные дыры, а их интенсивное излучение привело к реионизации водорода и окончательному появлению света. ...>>

Устройство идеальной очистки воздуха 28.11.2025

Качество воздуха в закрытых помещениях давно стало важнейшим фактором здоровья, особенно в городах, где люди проводят подавляющую часть времени внутри зданий. В последние годы исследователи уделяют все больше внимания именно тем технологиям, которые способны задерживать или разрушать вредоносные частицы до того, как они попадут в дыхательные пути человека. Одним из таких новаторских направлений стала разработка инженеров Университета Британской Колумбии в Оканагане, которые предложили принципиально иной подход к очистке воздуха в присутствии людей. По словам профессора Школы инженерии доктора Санни Ли, традиционные персонализированные вентиляционные системы действительно могут улучшать качество воздуха вокруг пользователя, однако их принцип работы имеет ряд ограничений. Человек вынужден находиться в строго определенной зоне, а одновременное использование одной системы несколькими людьми снижает эффективность. Кроме того, непрерывный поток сухого очищенного воздуха способен вызывать ...>>

Ощущение текстуры через экран гаджета 27.11.2025

Гаджеты научились передавать изображение и звук с впечатляющей реалистичностью, но тактильные ощущения по-прежнему остаются недоступными для полноценной цифровой симуляции. Именно поэтому инженеры и исследователи во всем мире стремятся создать технологии, которые позволят "почувствовать" виртуальный объект так же естественно, как и настоящий. Новая разработка специалистов Северо-Западного университета США стала одним из самых заметных шагов в этом направлении. Возглавлявшая исследование аспирантка Сильвия Тан (Sylvia Tan) подчеркивает, что прикосновение остается последним фундаментальным чувственным каналом, для которого пока нет зрелого цифрового аналога. По ее словам, если визуальные и звуковые интерфейсы давно обеспечивают высокую степень реалистичности, то осязание лишь начинает приближаться к этому уровню. В недавней публикации в журнале Science Advances Тан отмечает, что новая технология способна изменить само представление о взаимодействии человека с устройствами. Разработ ...>>

Случайная новость из Архива

Болеутоляющее свойство музыки 21.01.2019

Согласно результатам исследований из Лондонского университета королевы Марии, пациенты хирургического отделения, слушали музыку до, в течение или после операции, значительно меньше волновались и были больше удовлетворены результатами медицинского вмешательства.

В анализе было охвачено данные рандомизированных контролируемых исследований, в рамках которых взрослых пациентов, которым перед, в течение или после хирургической операции включали любой жанр музыки, сравнивали с пациентами, получавшими стандартное медицинское обслуживание.

Особый интерес для исследователей составляла постоперативная боль, потребность в обезболивающем, уровень тревожности, распространения инфекции, темп заживления ран, финансовые расходы, продолжительность пребывания в больнице и удовольствие пациента результатами операции. Так, авторы обзора обратили внимание, что в одном исследовании не изучали влияние музыки на распространение инфекции, темп заживления ран и расходы. Также не наблюдалось никаких различий в продолжительности пребывания пациентов в стационаре в зависимости от того, слушали музыку или нет.

Однако было обнаружено, что такая когнитивная деятельность, как прослушивание музыки, способна снизить чувствительность пациента к боли. Среди других потенциальных механизмов влияния - снижение вегетативной деятельности нервной системы, включая уменьшение частоты пульса и дыхания, а также снижение артериального давления. Интересно, что лучше влияла на снижение боли и тревожности музыка, которую включали перед операцией, а не во время или после нее.

Пол Глажиу, PhD из Университета Бонд (Квинсленд, Австралия) отметил, что прослушивание музыки является простой процедурой, которая не требует особых финансовых затрат, но которая существенно уменьшает временные неприятные ощущения, возникающие у многих пациентов хирургического отделения.

Однако он также обратил внимание на тот факт, что сложность реакции человека на музыку вызывает ряд вопросов относительно использования музыки в медицинских целях. И если впечатляющие результаты исследований безусловно подтверждают целесообразность использования музыки в медицинских учреждениях, то как именно - до сих пор не до конца понятно, ведь кого-то может успокаивать Моцарт, а кого-то - Мадонна.

Другие интересные новости:

▪ Стоимость традиционной и альтернативной энергии сравнялась

▪ Карманный секвенатор ДНК

▪ Чтобы попасть на самолет, достаточно показать часы

▪ Умные зеркала заднего вида в автомобилях Nissan

▪ OLED-планшет для рисования Wacom Movink

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Телевидение. Подборка статей

▪ статья Символ веры. Крылатое выражение

▪ статья Чем мумпсимус отличается от сумпсимуса? Подробный ответ

▪ статья Монтажник оконных и дверных блоков. Типовая инструкция по охране труда

▪ статья Сорельский цемент. Простые рецепты и советы

▪ статья Чудо-альбом. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025