Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Сигнальный фонарик на солнечных элементах. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Альтернативные источники энергии

Комментарии к статье Комментарии к статье

Попадали ли вы в ситуацию, когда вам пригодилось бы любое устройство, предупреждающее об опасности, а его не было? Например, вы вырыли канаву вокруг цветника или перекопали газон весной и вдруг вспомнили, что вечером у вас гости. Может быть, вы строите бассейн или на въезде на ваш участок образовалась большая выбоина. Независимо от конкретной ситуации бывают моменты, когда требуется устройство, предупреждающее об опасности.

Цель предупреждающей системы - привлечь внимание; эффективнее всего внимание человека привлекают вспышки света, а не постоянно горящий свет, потому что человеческий глаз воспринимает их как движение (изменение). Всем нам хорошо известно, что зрение человека значительно более чувствительно к движущимся объектам, нежели к неподвижным.

Описанный в этой главе мигающий предупреждающий фонарик предназначен именно для привлечения внимания в случае какой-либо опасности.

Принцип работы схемы

Охранная схема построена с использованием одной интегральной микросхемы LM3909. Эта микросхема является уникальным генератором импульсов, который потребляет очень мало энергии и требует минимума дополнительных элементов. О простоте устройства мигающего фонарика можно судить по схеме на рис. 1, требующей лишь четыре навесных элемента.

Сигнальный фонарик на солнечных элементах
Рис.1

Микросхема по существу представляет собой генератор с отрицательным сопротивлением, период следования импульсов в котором определяется внутренними элементами и емкостью конденсатора C1. В момент включения питания конденсатор C1 начинает заряжаться. Скорость заряда и, следовательно, постоянная времени устанавливаются и контролируются с помощью микросхемы IC1. Когда напряжение на конденсаторе достигнет установленного уровня срабатывания, IC1 включается и разряжает конденсатор C1 на светодиод СД1.

При разряде емкости через диод ток протекает через базу транзистора Q1, который переходит в режим насыщения. Резистор R1 ограничивает разрядный ток конденсатора С1 и определяет постоянную времени разрядного цикла, которая в свою очередь определяет время открытого состояния транзистора. При большом сопротивлении резистора конденсатор разряжается медленнее и постоянная времени увеличивается, а при малом сопротивлении - уменьшается.

Последовательно с переключающим транзистором включена лампа, предупреждающая об опасности, следовательно, она светит, когда транзистор проводит ток.

Когда напряжение на конденсаторе упадет до установленного нижнего предела, микросхема IC1 переходит в исходное состояние и конденсатор С1 начинает снова заряжаться. Цикл работы повторяется.

Отношение длительностей включенного и выключенного состояний (скважность) определяется отношением R1/C1 Наша схема разработана так, что лампа включена в течение приблизительно 6% времени полного периода работы. Это соответствует примерно 15 вспышкам света за 1 мин.

Источник питания

Хотя схема фонарика питается от солнечной батареи, основной его целью является предупреждение об опасности в ночное время, когда наше зрение гораздо менее эффективно и вполне можно натолкнуться на какое-либо препятствие. Следовательно, необходимо запасти энергию в дневное время для последующего ее использования в ночное время.

Для этого были отобраны никель-кадмиевые аккумуляторы, которые предпочтительнее свинцово-кислотных благодаря наличию относительно постоянного напряжения разряда. Было бы очень некстати, если бы яркость света снижалась ночью по мере разряда аккумулятора. При использовании никель-кадмиевых аккумуляторов освещение остается ярким вплоть до глубокого разряда.

Всего для питания схемы потребуется пять никель-кадмиевых аккумуляторных элементов типоразмера АА с припаянными выводами, в каждом из которых может быть запасено 0,5 А-ч электроэнергии.

Элементы припаиваются друг к другу противоположными выводами: положительный вывод одного элемента припаивается к отрицательному следующего. Затем лист плотной бумаги, служащий в качестве корпуса, оборачивается вокруг батареи и все изделие заливается подходящим полимерным составом с целью надежной влагоизоляции.

Солнечная батарея

Никель-кадмиевые аккумуляторы заряжаются от солнечной батареи. Для данной конструкции выбраны серповидные элементы, получаемые при срезе сегментов круглого элемента диаметром 10 см, с целью придания ему квадратной формы. Выходной ток этих элементов лежит в пределах 50 - 80 мА, хотя встречаются элементы, развивающие ток 125 мА и более.

Основной задачей, решаемой данной конструкцией солнечной батареи, является поддержание никель-кадмиевых аккумуляторов в постоянно заряженном состоянии без перезарядки. Как было показано в гл. 10, никель-кадмиевые аккумуляторы легко выходят из строя при перезаряде.

Дисковые аккумуляторы, используемые в данной конструкции, Можно заряжать током 50 мА, не боясь повредить их. Таким образом, мы изготовим солнечную батарею, генерирующую ток около 50 мА.

Предупреждающий об опасности фонарик имеет малые габариты, поэтому лучше изготовить небольшую солнечную батарею. С этой целью следует отобрать серповидные элементы, развивающие ток 90 - 100 мА.

Разделите серповидные элементы пополам. Это легко проделать, резко нажав крестообразным лезвием ножа на участок вблизи прямолинейного края элемента. Исходные круглые элементы, от которых были отколоты серповидные элементы, получены из кристаллического материала, в котором линии скола перпендикулярны прямолинейным краям серповидных элементов. Если нажать на этот край, элемент расколется на две части. Размеры получаемых элементов определяются тем, в каком месте производится нажатие. Если вы нажмете посредине, получите два одинаковых элемента.

Как известно, разделение элемента на сегменты не разрушает его, а лишь уменьшает выходной ток. Следовательно, при разделении элемента пополам каждая половинка будет генерировать ток 45-50 мА.

Не обязательно делить элементы на части, можно использовать целые серповидные элементы, генерирующие ток только 50 мА. Для отбора таких элементов полезен тестер. При этом необходимо помнить, что слаботочные элементы займут больше места в батарее.

Соедините 14 элементов последовательно - и вы получите солнечную батарею. Разместите их на небольшой пластинке из пластика или стекла и загерметизируйте для предохранения от воздействия окружающей среды.

Блокирующий диод (D1) защищает аккумуляторы от разряда через солнечную батарею в ночное время. Он представляет собой германиевый диод с низким прямым напряжением порядка 0,3 В и максимальным током 200 мА.

Конструкция сигнального фонарика

Электронная схема изготавливается с применением печатного монтажа. Печатная плата приведена на рис. 2, размещение деталей - на рис. 3. В изготовлении нет ничего сложного, только тщательно соблюдайте полярности выводов всех полупроводниковых приборов и тщательно пропаивайте соединения.

Сигнальный фонарик на солнечных элементах
Рис.2

Сигнальный фонарик на солнечных элементах
Рис.3

Мигающую лампу необходимо поместить в какой-либо стеклянный баллон для защиты от воздействия внешней среды. Кроме того, стеклянный баллон способствует рассеиванию света лампы в широком диапазоне углов. Для этой цели прекрасно подойдет сферический рассеиватель, ранее используемый в габаритных огнях некоторых автомобилей. Накрытая подобным колпачком лампа видна со всех направлений.

Можно также поместить лампу между двумя линзами, такая конструкция обычно используется в оградительных фонарях на дорогах. Линзы необязательно должны быть круглыми, подойдет любая форма. Не составит особого труда защитить лампу в соответствии с приведенными рекомендациями.

Мне самому тем не менее специально потребовался небольшой сигнальный фонарик, который светил бы только в одном направлении. В результате поисков я обнаружил в продаже дешевый осветитель, точно отвечающий моим требованиям (см. подробнее список деталей). Он предназначался для использования в автомобиле и был оснащен магнитным держателем (очень удобно для закрепления на металлических поверхностях) и разъемом для подключения в гнездо прикуривателя на 12 В.

Чтобы использовать этот фонарик в качестве сигнального, первым делом нужно было обрезать соединительный привод с 12-воль- товым разъемом так, чтобы остался присоединенным отрезок провода длиной около 10 см. Сохраните при желании разъем прикуривателя и соединительный провод для будущих конструкций. Теперь удалите рукоятку для сматывания провода, отвинтив удерживающий ее винт.

Лампочка в этом фонарике рассчитана на 12 В и хорошо работать в нашей схеме не будет. Для доступа к лампочке отверните против часовой стрелки внешнее кольцо, удерживающее переднее стекло фонарика. Замените лампу на лампу № 50 и соберите фонарик.

Печатная плата, изображенная на рис. 2, специально сделана таких размеров, чтобы точно уместиться в выемке от 12-вольтового разъема.

Плата и все детали на ней точно подходят по размерам, кроме конденсатора С1, который необходимо расположить "лежа".

Наконец, припаяйте выводы лампы, аккумуляторной и солнечной батарей к соответствующим контактным площадкам платы. При окончательной сборке фонарик закрепляется на аккумуляторной батарее. Дополнительный вес батареи добавит фонарику устойчивость. Солнечная батарея, которая не крепится к фонарику, может располагаться в любом освещаемом солнцем месте.

Использование сигнального фонарика

Фонарик может не снабжаться тумблером для выключения его в дневное время. В этом нет необходимости. Мой опыт показывает, что свежезаряженного комплекта аккумуляторов вполне хватает на неделю работы фонарика. Совершенно разряженные никель-кадмиевые элементы полностью подзаряжаются за 10 солнечных часов, иными словами, за полтора дня работы солнечной батареи.

Если такой режим работы вас не удовлетворяет, следует увеличить размер солнечной батареи, чтобы она генерировала ток 17 мА, и сменить прежние аккумуляторные элементы на элементы с большей емкостью (типа С). В этом случае будет запасаться приблизительно в 3 раза больше энергии.

Область применения этого небольшого портативного фонарика почти не ограничена. Конечно, в голову тотчас приходят уже упомянутые применения: своевременное световое предупреждение о впадинах и ямах, трудноразличимых изгородях и незаметных препятствиях. Неплохо также установить сигнальные огни на лодки, пристани и высокие здания.

Если вы радиолюбитель, возможно, вы захотите закрепить мигающий фонарик со сферической крышкой на мачте вашей антенны. Домохозяйкам понравится использование подобного приспособления для предупреждения о только что натертых полах. Фонарик с магнитным держателем можно укрепить на крыше автомобиля, поставленного на стоянку на обочине шоссе.

А какая забавная получится благодаря такому фонарику маска с мерцающими глазами!

Автор: Байерс Т.

Смотрите другие статьи раздела Альтернативные источники энергии.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Растения сигнализируют об опасности вулканической активности 17.06.2025

Извержения вулканов - одни из самых разрушительных природных явлений, и своевременное их предсказание является важной задачей для защиты жизни и имущества людей. Современные технологии позволяют отслеживать сейсмическую активность, тепловые аномалии и газовые выбросы, однако ученые из разных стран продолжают искать новые, более ранние признаки приближающейся опасности. Недавнее исследование команды под руководством вулканолога Николь Гвинн продемонстрировало необычный способ раннего обнаружения вулканической активности с помощью изменений в растительности вокруг вулкана Этна - одного из самых активных вулканов Европы. В ходе двухлетних наблюдений ученые выявили 16 случаев, когда увеличение содержания углекислого газа (CO2) в воздухе или почве совпадало с ростом показателя NDVI - нормализованного индекса растительности, отражающего интенсивность фотосинтеза и здоровье зеленых насаждений. Этот индекс широко используется для оценки густоты и жизнеспособности растительного покрова на сп ...>>

Магнит без использования полезных ископаемых 17.06.2025

Технологии все больше зависят от редких и дорогих материалов, добыча которых сопряжена с экологическими и геополитическими рисками. В связи с этим поиск альтернативных решений становится одной из важнейших задач науки и промышленности. Недавно американские ученые во главе с исследователем китайского происхождения Цзянь-Пин Ванг разработали магнит, изготовленный исключительно из железа и азота, который не содержит традиционных редкоземельных элементов. Это открытие может кардинально изменить подход к производству магнитных материалов и значительно снизить зависимость от нестабильных международных поставок. В отличие от широко используемых сегодня магнитов, содержащих редкие полезные ископаемые, такие как самарий и диспрозий, новый магнит отличается более простой и экологичной составной частью. По словам ученых, магнит, созданный из железа и азота, обладает силой магнитного поля, которая превосходит многие известные материалы на рынке. Это делает его перспективной заменой для постоянн ...>>

Скука полезна творческим людям 16.06.2025

Когда информационный поток непрерывно заполняет наше сознание, умение сделать паузу становится особенно важным. Именно в моменты кажущейся скуки мозг получает возможность перезагрузиться и активировать скрытые ресурсы, стимулирующие творческое мышление и саморефлексию. Ученые из Университета Саншайн-Кост в Австралии провели исследование, которое подтверждает, что короткие периоды скуки могут быть полезны для творческих людей и не только. Скука возникает в тот момент, когда способность человека удерживать внимание начинает снижаться, и активируется так называемая сеть пассивного режима мозга. Эта система отвечает за внутренние мысли и саморефлексию, в то время как активность исполнительной сети, которая обычно помогает сосредоточиться, заметно снижается. Таким образом, скука становится не просто неприятным ощущением, а своего рода переключателем, дающим мозгу возможность отдохнуть от постоянной концентрации. Современный ритм жизни сопровождается постоянной стимуляцией симпатическо ...>>

Случайная новость из Архива

Люминесцентный материал для накопления света от LED-ламп 26.02.2017

Достаточно массовый переход от ламп дневного света на светодиодные источники излучения выявил одну интересную проблему. Традиционные люминесцентные краски и материалы со свойством накапливать свет и светиться после этого в темноте плохо сочетаются с LED-освещением. Широко распространенные на рынке люминесцентные материалы обычно накапливают энергию под воздействием ультрафиолетового излучения, которого нет в спектре LED-ламп. Между тем, потребность в люминесцентных материалах высока во многих сферах. Например, с помощью "светящихся" красок обозначаются маршруты эвакуации из высотных зданий, что критически важно в случае аварий.

Решить проблему и создать материалы с эффектом послесвечения в сочетании с LED-освещением взялись Национальный японский институт AIST и компания Tateyama Kagaku Industry. Партнерам удалось создать материал с нужными свойствами и технологию его нанесения на пластиковую (PET) подложку. Это металлорганическая смесь, состав которой держится в секрете. В качестве металла используется некий редкоземельный материал.

Полученные образцы в сочетании с LED-освещением (длина волны 460 нм) в первые 10 минут характеризуются свечением на уровне 602 мкд/м2, что в три раза интенсивнее, чем в случае представленных на рынке люминесцентных материалов. Через четыре часа яркость свечения нового материала падает до 10 мкд/м2. Отметим, обычные материалы снижают интенсивность свечения до этого уровня уже через два часа после прекращения освещения.

В дальнейшем разработчики намерены получить материал с лучшими свойствами. Этого можно добиться, подобрав вид активирующей редкоземельной присадки и ее количество. Добавим, на пластиковую подложку материал наносится методом фотореакции, а не в виде смесей с отвердителем, как сейчас. Это обеспечивает высокую устойчивость к внешним неблагоприятным погодным факторам, включая попадание влаги и высокий нагрев.

Другие интересные новости:

▪ Разные породы деревьев по-разному влияют на климат

▪ Грецкие орехи полезны для здоровья сердца

▪ Автомобиль не наедет на пешехода

▪ Ультракомпактная древесина

▪ Смартфон Nokia N9

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Часы, таймеры, реле, коммутаторы нагрузки. Подборка статей

▪ статья Выпустить джинна из бутылки. Крылатое выражение

▪ статья Какие пресмыкающиеся способны бегать по поверхности воды? Подробный ответ

▪ статья Приготовитель лаков, красок, левкаса. Типовая инструкция по охране труда

▪ статья Радиочастотный искатель подслушивающих устройств. Энциклопедия радиоэлектроники и электротехники

▪ статья Корректирующий усилитель для кабельного ТВ. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025