Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Порядок расчета фотоэлектрической системы. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Альтернативные источники энергии

Комментарии к статье Комментарии к статье

Расчет фотоэлектрической системы можно условно разбить на следующие этапы:

  • Определение нагрузки и потребляемой энергии.
  • Определение значений необходимой мощности инвертора и емкости аккумуляторной батареи.
  • Определение необходимого количества фотоэлектрических модулей исходя из данных по приходу солнечной радиации в месте установки системы.
  • Расчет стоимости системы.

После выполнения 4 шага, если стоимость системы недопустимо велика, можно рассмотреть следующие варианты уменьшения стоимости системы автономного электроснабжения: уменьшение потребляемой энергии за счет замены существующей нагрузки на энергоэффективные приборы, а также исключение тепловой, "фантомной" и необязательной нагрузки (например, можно использовать холодильники, кондиционеры и т. п., работающие на газе):

  • замену нагрузки переменного тока на нагрузку постоянного тока. В этом случае можно выиграть на отсутствии потерь в инверторе (от 10 до 40%). Однако, нужно учитывать особенности построения низковольтных систем постоянного тока;
  • введение в систему электроснабжения дополнительного генератора электроэнергии или ветроустановки, дизель-бензогенератора;
  • смириться с тем, что электроэнергия будет у вас не всегда. И чем больше будет мощность системы отличаться от потребляемой мощности, тем более вероятны будут у вас периоды отсутствия электроэнергии.

1. Определение энергопотребления

Составьте список устройств- потребителей электроэнергии, которые вы собираетесь питать от ФЭС. Определите потребляемую мощность во время их работы. Большинство устройств имеют маркировку, на которой указана номинальная потребляемая мощность в Ваттах или кило Ваттах. Если указан потребляемый ток, то нужно умножить этот ток на номинальное напряжение (обычно 220 В).

Подсчитайте нагрузку переменного тока. Если у вас нет такой нагрузки, то можете пропустить этот шаг и перейти к подсчету нагрузки постоянного тока.

1.1. Перечислите всю нагрузку переменного тока, ее номинальную мощность и число часов работы в неделю. Умножьте мощность на число часов работы для каждого прибора. Сложите получившиеся значения для определения суммарной потребляемой энергии переменного тока в неделю.

Приведем простой пошаговый метод расчета фотоэлектрической системы (ФЭС). Этот метод поможет определить требования к системе и выбрать необходимые компоненты системы электроснабжения.

1.2. Далее нужно подсчитать, сколько энергии постоянного тока потребуется. Для этого нужно умножить получившееся значение на коэффициент 1,2, учитывающий потери в инверторе.

1.3. Определите значение входного напряжения инвертора по характеристикам выбранного инвертора. Обычно это 12 или 24 В.

1.4. Разделите значение п. 1.2 на значение п. 1.3. Вы получите число Ампер-часов в неделю, требуемое для покрытия вашей нагрузки переменного тока.

Подсчитайте нагрузку постоянного тока.

1.5. Запишите данные нагрузки постоянного тока.

1.6. Определите напряжение в системе постоянного тока. Обычно это 12 или 24 В. (Как в п. 1.3)

1.7. Определите требуемое количество А*ч в неделю для нагрузки постоянного тока (разделите значение п. 1.5 на значение п. 1.6).

1.8. Сложите значение п. 1.4 и п. 1.7 для определения суммарной требуемой емкости аккумуляторной батареи. Это будет количество А*ч, потребляемых в неделю.

1.9. Разделите значение п. 1.8 на 7 дней; вы получите суточное значение потребляемых А*ч.

2. Оптимизируйте нагрузку

На этом этапе важно проанализировать нагрузку и попытаться уменьшить потребляемую мощность. Это важно для любой системы, но особенно важно для системы электроснабжения жилого дома, так как экономия может быть очень существенной. Сначала определите большую и изменяемую нагрузку (например, насосы для воды, наружное освещение холодильники переменного тока, стиральная машина, электронагревательные приборы и т. п.) и по пытайтесь исключить их из вашей системы или заменить на другие аналогичные модели, работающие на газе или от постоянного тока.

Начальная стоимость приборов постоянного тока обычно выше (потому что они выпускаются не в таком массовом количестве), чем таких же приборов переменного тока, но вы избежите потерь в инверторе. Более того, зачастую приборы постоянного тока более эффективны, чем приборы переменного тока (во многих бытовых приборах, особенно электронных, переменный ток преобразуется в постоянный, что ведет к потерям энергии в блоках питания приборов).

Замените лампы накаливания на люминесцентные лампы везде, где это возможно. Люминесцентные лампы обеспечивают такой же уровень освещенности при том, что потребляют в 4-5 раз меньше электроэнергии Срок их службы также примерно в 8 раз больше.

Если у вас есть нагрузка, которую вы не можете исключить, рассмотрите вариант, при котором вы будете включать ее только в солнечные периоды или только летом. Пересмотрите список Вашей нагрузки и пересчитайте данные.

3. Определите параметры аккумуляторной батареи (АБ)

Выберите тип аккумуляторной батареи, которую вы будете использовать. Мы рекомендуем использовать терметичные необслуживаемые свинцово-кислотные аккумуляторы, которые обладают самыми лучшими эксплуатационно-экономическими параметрами.

Далее вам нужно определить, сколько энергии вам нужно получать от аккумуляторной батареи. Часто это определяется количеством дней, в течение которых АБ будет питать нагрузку самостоятельно без подзаряда. Дополнительно к этому параметру вам нужно учитывать характер работы системы электроснабжения. Например, если вы устанавливаете систему для вашего загоролного дома, который вы посещаете только на выходные, вам лучше установить АБ большей емкости, потому что она может заряжаться в течение всей недели, а отдавать энергию только в выходные дни. С другой стороны, если вы добавляете фотоэлектрические модули к уже существующей системе электроснабжения на базе дизель- или бензогенератора, ваша батарея может иметь меньшую емкость, чем расчетная, потому что этот генератор может быть включен для подзаряд АБ в любое время.

После того, как вы определите требуемую емкость АБ. можно переходить к рассмотрению следующих очень важных параметров.

3.1. Определите максимальное число последовательных "дней без солнца" (т. е. когда солнечной энергии недостаточно для заряда АБ и работы нагрузки из-за непогоды или облачности). Вы также можете принять за этот параметр выбранное вами количество шей, в течение которых АБ будет питать нагрузку самостоятельно без подзаряда.

3.2. Умножьте суточное потребление в А*ч (см. п. 1.9 расчета потребляемой энергии выше) на количество дней, определенных в предыдущем пункте

3.3. Задайте величину глубины допустимого разряда АБ. Учитываете, что чем больше глубина разряда, тем быстрее ваши АБ выйдут из строя. Мы рекомендуем значение глубины разряда 20% (не более 30%), что значит что вы можете использовать 20% от значения номинальной емкости вашей АБ. Используйте коэффициентов (или 0,3). Ни при каких обстоятельствах разряд батареи не должен превышать 80%!

3.4. Разделите п.3.2 на п.3.3.

3.5. Выберите коэффициент из таблицы, приведенной ниже, который учитывает температуру окружающей среды в помещении, где установлены АБ. Обычно, это средняя температура в зимнее время. Этот коэффициент учитывает уменьшение емкости АБ при понижении температуры.

Температурный коэффициент для аккумуляторной батареи:

°F °C Коэф.
80 6.7 1.00
70 21.2 1.04
60 15.6 1.11
50 10.0 1.19
40 4.4 1.30
30 -1.1 1.40
20 -6.7 1.59

3.6. Умножьте значение п.3.4 на коэффициент п.3.5. Вы получите общую требуемую емкость АБ.

3.7. Разделите это значение на номинальную емкость выбранной вами аккумуляторной батареи. Округлите полученное значение до ближайшего большего целого. Это будет количество батарей, которые будут соединены параллельно.

3.8. Разделите номинальное напряжение постоянного тока системы (12, 24 или 48 В) на номинальное напряжение выбранной аккумуляторной батареи (обычно 2, 6 или 12В). Округлите полученное значение до ближайшего большего целого. Вы получите значение последовательно соединенных батарей.

3.9. Умножьте значение п.3.7 на значение п.3.8. для того, чтобы подсчитать требуемое количество аккумуляторных батарей.

4. Определите количество пиковых солнце-часов.

Несколько факторов влияют на то, как много солнечной энергии будет принимать ваша солнечная батарея:

  • когда будет использоваться система? Летом? Зимой? Круглый год?
  • типичные погодные условия вашей местности:
  • будет ли система ориентироваться на солнце;
  • расположение и угол наклона фотоэлектрических модулей.

Для определения среднемесячного прихода солнечной радиации вы можете воспользоваться таблицей. Выработка электроэнергии солнечной фотоэлектрической батареей (СБ) зависит от угла падения солнечных лучей на СБ. Максимум бывает при угле 90 градусов. При отклонении от этого угла все большее количество лучей отражается, а не поглощается СБ.

Зимой приход радиации значительно меньше из-за того, что дни короче, облачных дней больше, Солнце стоит ниже на небосклоне. Если вы используете вашу систему только летом, используйте летние значения, если круглый год, используете значения для зимы. Для надежного электроснабжения выбирайте из среднемесячных значений наименьшее для периода, в течение которого будет использоваться ФЭС.

Выбранное среднемесячное значение для худшего месяца нужно разделить на дней в месяце. Вы получите среднемесячное количество число пиковых солнце-часов, которое будет использоваться для расчета вашей СБ.

5. Расчет солнечной батареи

Необходимо определить общее количество модулей, необходимых для вашей системы.

Ток в точке максимальной мощности Impp может быть определен из спецификаций модулей. Вы также можете определить Impp поделив номинальную мощность модуля на напряжение в точке максимальной мощности Umpp (обычно 17 - 17,5 В для 12-вольтового модуля).

5.1. Умножьте значение п. 1.9 на коэффициент 1.2 для учета потерь на заряд-разряд АБ.

5.2. Разделите полученное значение на среднее число пиковых солнце-часов в вашей местности. Вы получите ток, который должна генерировать СБ.

5.3. Для определения числа модулей, соединенных параллельно разделите значение п. 5.2 на Impp одного модуля. Округлите полученное число до ближайшего большего целого.

5.4. Для определения числа модулей, соединенных последовательно, разделите напряжение постоянного тока системы (обычно 12, 24, 48 В) на номинальное напряжение модуля (обычно 12 или 24 В).

5.5. Общее количество требуемых фотоэлектрических модулей равно произведению значений п. 5.3 и п. 5.4.

6. Расчет стоимости системы

Для расчета стоимости фотоэлектрической системы электроснабжения нужно сложить стоимости СБ, АБ, инвертора, контроллера заряда АБ и соединительной арматуры (провода, выключатели, предохранители и т. п.)

Стоимость СБ равна произведению значения п.5.5 на стоимость одного модуля. Стоимость АБ равна произведению значения п.3.9 на стоимость одной аккумуляторной батареи. Стоимость инвертора зависит от его мощности и типа. Стоимость соединительной арматуры можно принять примерно равной 0,1-1% от стоимости системы.

Смотрите другие статьи раздела Альтернативные источники энергии.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Токсичность интернета преувеличена 07.01.2026

Социальные сети нередко воспринимаются как арена постоянной агрессии, оскорблений и распространения фейковой информации. Новое исследование Стэнфордского университета показывает, что реальность значительно отличается от популярного представления: интернет гораздо менее токсичен, чем многие пользователи считают. Ученые опросили более тысячи американцев, попросив их оценить долю пользователей соцсетей, которые ведут себя агрессивно или распространяют ненависть. Оказалось, что впечатления людей сильно преувеличивают масштабы проблемы. Например, респонденты считали, что почти половина пользователей Reddit хотя бы раз оставляла оскорбительные комментарии, тогда как фактические данные платформы показывают, что таких людей не более 3%. Аналогичная ситуация наблюдается с дезинформацией. Опрос показал, что большинство участников считали почти половину аудитории Facebook распространителями фейковых новостей, однако статистика говорит об обратном: фактическая доля таких пользователей состав ...>>

Процессоры Ryzen AI 400 07.01.2026

Современные вычисления все больше ориентируются на интеграцию искусственного интеллекта и высокую производительность в компактных устройствах, таких как ноутбуки и мини-ПК. Новая линейка процессоров AMD Ryzen AI 400 демонстрирует, как разработчики объединяют мощные центральные ядра, графику и нейросетевые ускорители в одном чипе, чтобы удовлетворять растущие потребности пользователей в играх, контенте и ИИ-приложениях. AMD представила процессоры серии Gorgon Point, которые включают до 12 ядер Zen 5 и до 24 потоков вычислений. Чипы поддерживают интегрированную графику RDNA 3.5, обеспечивают максимальную тактовую частоту до 5,2 ГГц и имеют энергопотребление от 15 Вт до 54 Вт. Особое внимание уделено NPU, способному обрабатывать до 60 триллионов операций в секунду (TOPS), что делает эти процессоры эффективными для задач с искусственным интеллектом. Конструкция Ryzen AI 400 сочетает ядра Zen 5 и Zen 5c, обеспечивая высокую гибкость и производительность. Несмотря на то, что архитектур ...>>

Женщины лучше распознают признаки болезни по лицу 06.01.2026

Способность распознавать, что кто-то нездоров, часто проявляется интуитивно: бледная кожа, опущенные веки, уставшее выражение лица могут сигнализировать о недомогании. Новое исследование международной группы ученых показало, что женщины в среднем точнее мужчин улавливают такие тонкие невербальные признаки болезни, что может иметь эволюционные и социальные объяснения. В отличие от предыдущих работ, где использовались отредактированные фотографии или имитация больных лиц, ученые решили проверить, насколько люди способны распознавать естественные признаки недомогания. Такой подход позволил оценить реальную чувствительность к изменениям в лицах, возникающим при болезни. В исследовании приняли участие 280 студентов, поровну мужчин и женщин. Участникам предложили оценить 24 фотографии, на которых изображены люди как в здоровом состоянии, так и во время болезни. Это дало возможность сравнить восприятие естественных признаков недомогания в реальных лицах. Для анализа состояния каждого ...>>

Случайная новость из Архива

Кимчи повышает защиту организма 04.01.2026

Интерес к ферментированным продуктам в последние годы заметно вырос, и ученые все чаще рассматривают их не только как часть национальной кухни, но и как фактор, способный влиять на здоровье человека. Особое внимание привлекает кимчи - традиционное корейское блюдо, давно считающееся полезным, но лишь недавно получившее серьезное научное подтверждение своих свойств. Новое клиническое исследование показало, что кимчи может не только усиливать иммунную защиту, но и предотвращать ее чрезмерную активацию, что особенно важно для поддержания иммунного баланса.

Результаты работы были представлены World Institute of Kimchi - государственным научным учреждением, действующим под эгидой Министерства науки и ИКТ Южной Кореи. Исследование стало первым в мире, в котором влияние кимчи на иммунную систему человека анализировалось на уровне отдельных клеток. Такой подход позволил выйти за рамки общих показателей крови и рассмотреть, как именно меняется поведение различных иммунных клеток.

В клиническом эксперименте приняли участие взрослые люди с избыточной массой тела. В течение 12 недель участников разделили на три группы: одна получала плацебо, вторая ежедневно употребляла порошок из кимчи природной ферментации, а третья - порошок из кимчи, изготовленного с использованием специально подобранной закваски. Это дало возможность сравнить не только эффект самого продукта, но и влияние разных технологий ферментации.

После завершения исследования ученые провели детальный анализ клеток крови, применив метод одноклеточной генетической транскриптомики. Эта современная технология позволяет отслеживать изменения в активности генов в отдельных клетках, выявляя тонкие сдвиги в работе иммунной системы, которые обычно остаются незаметными при стандартных лабораторных тестах.

Результаты показали, что у людей, регулярно употреблявших кимчи, усиливалась активность антиген-презентирующих клеток. Именно они первыми распознают вирусы и бактерии и передают сигнал другим элементам иммунной системы. Кроме того, CD4+ Т-клетки формировались более сбалансированно, поддерживая оптимальное соотношение между защитными и регуляторными функциями иммунитета.

Такая картина указывает на то, что кимчи действует не как грубый стимулятор, заставляющий иммунную систему работать "на пределе". Напротив, ферментированный продукт выполняет роль тонкого регулятора, усиливая защитные реакции при необходимости и одновременно снижая риск избыточного воспалительного ответа, который может быть вреден для организма.

Исследователи также зафиксировали различия между способами ферментации. Оба варианта кимчи оказывали положительное влияние, однако продукт, приготовленный с использованием контролируемой закваски, демонстрировал более выраженное иммуномодулирующее действие. В частности, у этой группы наблюдалась лучшая способность иммунных клеток распознавать угрозы и меньшая склонность к излишней активации.

Руководитель исследования доктор Ли У Дже отметил, что полученные данные открывают перспективы для разработки функциональных продуктов питания на основе кимчи. В дальнейшем ученые планируют расширить международные исследования, посвященные роли молочнокислых бактерий в регуляции иммунитета и метаболического здоровья. В итоге кимчи все более уверенно утверждается не только как элемент традиционной кухни, но и как научно подтвержденный продукт для поддержки сбалансированной и устойчивой иммунной системы.

Другие интересные новости:

▪ Измерена масса нейтрино

▪ Оптимизация производительности сетей 5G

▪ Сети 5G опасны для животных

▪ Стиральная машина для собак

▪ Рюкзак с шестью роборуками

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Инструкции по эксплуатации. Подборка статей

▪ статья Послушная пила. Советы домашнему мастеру

▪ статья Зачем гольфист Тайгер Вудс снялся в ролике о том, что он может ходить по воде? Подробный ответ

▪ статья Видеоинженер. Должностная инструкция

▪ статья Красная протрава для рога. Простые рецепты и советы

▪ статья Сладости на шнурке. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2026