Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Расчет ветроколеса. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Альтернативные источники энергии

Комментарии к статье Комментарии к статье

Основной частью ветроустановки, является ветроколесо. Посредством его кинетическая энергия ветра преобразовывается в энергию механическую.

Напомним ветроколеса делятся на две группы - с горизонтальной и вертикальной осью вращения. Мы будем рассматривать ветроколесо с горизонтальной осью вращения. Оно может иметь одну или несколько лопастей, которые устанавливаются под некоторым углом к плоскости вращения.

Ветроколесо может быть быстроходным или тихоходным. В зависимости от диаметра и количества лопастей обороты ветроколеса при одной и той же скорости ветра будут разные. Этот показатель называется быстроходностью ветроколеса и определяется отношением окружной скорости конца лопасти к скорости ветра:

Z = L * W / 60 / V,

где: W - частота вращения ветроколеса (об/мин.); V - скорость ветра (м/с); L - длина окружности (м).

Но первоначально мы не знаем частоту оборотов ветроколеса, которые зависят от его исполнения. При прохождении воздуха через лопасти, остается "возмущенный" след, который тормозит вращение ветроколеса. И поэтому, чем лопастей больше, тем быстроходность становится меньше. Для того, чтобы ориентировочно рассчитать обороты ветроколеса, возьмем за основу быстроходность (Z). установленную практическим путем для ветроколес с разным количеством лопастей:

  • 1 - лопастное ветроколесо Z = 9,0;
  • 2 - лопастное ветроколесо Z = 7,0;
  • 3 - лопастное ветроколесо Z = 5,0;
  • 6 -лопастное ветроколесо Z = 3,0;
  • 12 -лопастное ветроколесо Z = 1,2.

По приведенной ниже формуле рассчитаем обороты ветроколеса:

W = V / L * Z * 60.

От исполнения ветроколеса зависят результаты работы всей конструкции и безопасная эксплуатация установки.

Многолопастные конструкции - низкооборотитые и, следовательно, центробежные и гироскопические силы значительно меньше, чем у высокоскоростных. Учитывая то, что технологии изготовления ветроколес в любительских условиях оставляют желать лучшего, рекомендуют многолопастные ветроколеса с количеством лопастей не менее пяти - такие конструкции не так критичны к погрешностям балансировки, не требовательны к аэродинамическому исполнению профиля лопасти и с успехом могут применятся вогнутые лопатки.

Установка лопаток

Если разместить лист фанеры под углом к набегающему потоку воздуха, то максимальная подъемная сила при одинаковой скорости воздуха будет при угле установки равной 45°. По мере уменьшения или увеличения угла, будет уменьшаться и подъемная сила, а сопротивление потоку будет, соответственно, уменьшаться или увеличиваться. Поэтому возьмем за отправную точку угол в 45°. Но дня того, чтобы ветроколесо максимально эффективно использовало энергию ветра и не имело зон торможения - колесо должно иметь изогнутую форму: чем дальше от оси вращения находится элемент лопасти, тем меньший угол установки требуется

Шаг винта

Одним из показателей для расчета лопасти является шаг винта - расстояние, на которое переместится масса воздуха за один оборот, если представить эту массу воздуха в виде гайки диаметр которой равон 2R, а угол подъема резьбы равен углу между хордой взятого сечения и плоскостью вращения винта. Шаг винта определяется по формуле:

H = 2πR*tgα,

где: Н = шаг выделенного сечения (м.); R = радиус сечения (м.); α = угол установки сечения (град.).

Угол установки сечения лопастей ветроколеса определим по преобразованной формуле:

α (угол установки) = Arctg (H/2πR).

Пример расчета крутки лопасти

Шаг лопасти = 1 метр, диаметр ветроколеса = 3 метра.

При данных установках в идеале, без учета сопротивления ветроколеса, при скорости ветра 3 м/с ветроколесо должно сделать 3 оборота в секунду или 3*60 = 180 об/мин.

Но это в идеале. На самом деле, на скорость врашения ветроколеса влияют турбулентность потока от предыдущей лопасти, трение, создаваемое самими лопастями, реакция генератора в зависимости от приложенной электрической нагрузки. И в реальности обороты ветроколеса будут стремится к расчетным показателям, но фактически окажутся значительно ниже.

Мощность ветрового потока

Следующий показатель при расчете ветроколеса, это мощность ветрового потока, проходящего через площадь ометания ветроколеса. Вычисляют ее достаточно точно по общепринятой методике:

Р = 0,5 * Q * S * V3,

где Р - мощность (Вт); Q - плотность воздуха (1,23 кг/ м3); S - площадь ометания ротора (м:);  V - скорость ветра (м/с).

Так как стопроцентного преобразования одного вида энергии в другую невозможно, то начнем вычитать потери. Ветроколесо имеет определенный коэффициент использования (преобразования) энергии ветра. Максимальное значение теоретического использования энергии ветра у идеальных быстроходных крыльчатых ветроколес равно 0,593. Для лучших образцов быстроходных ветроколес с аэродинамическим профилем этот показатель составляет от 0,42 до 0,46. Для многолопастных тихоходных ветроколес этот показатель колеблется от 0,27 до 0,35 в зависимости от качества исполнения и в расчетах обозначается символом Ср. Для согласования оборотов тихоходного ветроколеса и генератора необходимо использовать повышающий редуктор и его КПД колеблется от 0,7 до 0,9 в зависимости от коэффициента передачи и исполнения.

Преобразовывая механическую энергию в электрическую, также несем потери. Поэтому отражаем их в КПД генератора Ng от 0,6 (для автотракторных генераторов с обмоткой возбуждения) до 0,8 (для генераторов с возбуждением от постоянных магнитов).

Р = 0,5 * Q * S * V3 * Ср * Ng * Nb,

где Р - мощность (Вт); Q - плотность воздуха (1,23 кг/ м3); S - площадь ометания ротора (м2); V - скорость ветра, (м/с); CP - коэффициент использования энергии ветра (0,35 хороший конструктив); Ng - КПД генератора (автомобильного 0,6, на постоянных магнитах 0,8); Nb - КПД повышающего редуктора (0,7-0,9).

Подставим данные для 6-лопастного 3-метрового ветроколеса и узнаем, какую мощность можно получить на ветроустановке с генератором на постоянных магнитах и редуктором, имеющим КПД = 0.9 при средней скорости 5 м/с:

Р = 0,5 * 1,23 * (3,14 *(1,5*1,5 )) * ( 5 * 5 * 5 ) * 0,35 * 0,8 * 0,9 = 136 Вт.

При этом обороты ветроколеса составят.

W = V /  L * Z * 60 = 5 / 9,42 * 3 * 60 = 95,5 об/мин.

Остается подобрать передаточное число редуктора в зависимости от оборотов генератора.

Автор: Евгений Бойко

Смотрите другие статьи раздела Альтернативные источники энергии.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Использование Apple Vision Pro во время операций 16.03.2024

Медицинская команда больницы Кромвеля в Лондоне впервые применила Apple Vision Pro в ходе двух операций на позвоночнике. Это событие подтверждает потенциал гарнитуры в качестве медицинского инструмента, изменяющего подход к хирургической практике. Хотя сами врачи не использовали Vision Pro, операционная медсестра работала с виртуальной реальностью, используя очки во время подготовки и выполнения процедур. Гарнитура позволила просматривать виртуальные экраны в операционной, выбирать инструменты и следить за ходом операции. Программное обеспечение, разработанное компанией eXeX, специализирующейся на создании приложений на основе искусственного интеллекта для хирургии, существенно улучшило процесс оказания медицинской помощи пациентам. Использование Apple Vision Pro открывает новые возможности для разработки приложений в сфере здравоохранения, таких как клиническое образование, планирование операций, обучение и медицинская визуализация. Внедрение Apple Vision Pro в медицинскую пр ...>>

Хранение углерода в Северное море 16.03.2024

Министр энергетики Норвегии Терье Осланд объявил о запуске проекта Longship, нацеленного на создание центрального хранилища углекислого газа в Северном море. Этот амбициозный проект оценивается в $2,6 млрд и направлен на применение технологии CCS (углеродного захвата и хранения) для смягчения воздействия климатических изменений. Норвегия уже имеет опыт в области CCS благодаря успешным проектам Sleipner и Snohvit, и сейчас стремится увеличить объем углерода, запечатываемого под морским дном. План Longship предусматривает создание мощности по захвату и хранению 1,5 млн. тонн углерода ежегодно в течение 25 лет. Несмотря на позитивные перспективы, существуют опасения по поводу долгосрочных последствий такого хранения. Однако сторонники проекта утверждают, что морское хранение углерода имеет ряд преимуществ, включая минимальное воздействие на окружающую среду. Проект Longship осуществляется при участии компаний Equinor, Shell и TotalEnergies через совместное предприятие Northern Li ...>>

Выращены мини-органы из амниотической жидкости человека 15.03.2024

Международная команда ученых под руководством профессора Фань Сюлиня из Университета Чжэцзян разработала уникальный способ выращивания мини-органов из клеток, обнаруженных в амниотической жидкости человека. Этот значительный прорыв в медицине может привести к улучшению диагностики и лечения врожденных заболеваний. Органоиды, представляющие собой трехмерные клеточные структуры, имитирующие органы в меньшем масштабе, были выращены из клеток легких, почек и тонкого кишечника, найденных в амниотической жидкости. Этот метод открывает новые возможности для изучения различных состояний плода и может стать ключом к ранней диагностике и лечению врожденных дефектов. Хотя пока не проводились попытки использования этого метода в лечении, ученые надеются, что их исследования в будущем помогут бороться с серьезными врожденными заболеваниями, которые затрагивают миллионы новорожденных ежегодно. Этот прорыв может изменить практику медицинских вмешательств, позволяя диагностировать и лечить врожд ...>>

Случайная новость из Архива

Бумажные транзисторы 11.02.2009

Португальские инженеры из Нового университета в Лиссабоне разработали способ печати транзисторов на бумаге.

Бумага, покрытая тонким слоем окиси цинка с добавками галлия и индия, служит и полупроводником и изолятором между двумя частями транзистора, напечатанными с разных сторон листа. По характеристикам бумажные транзисторы близки к обычным кремниевым, но значительно дешевле и без вреда могут подвергаться изгибам.

Предполагают, что электронные схемы с такими транзисторами можно будет печатать, например, на банкнотах, чтобы облегчить их распознавание в торговых автоматах и затруднить подделку.

Другие интересные новости:

▪ Гибкий и полупрозрачный светодиод из перовскита

▪ Новый USB-разъем не будет несовместим с нынешним

▪ Смартфон HTC EVO 3D

▪ Полет со скоростью 68 тысяч терабитометров в секунду

▪ Биогорючее невыгодно

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Конспекты лекций, шпаргалки. Подборка статей

▪ статья Головотяпы. Крылатое выражение

▪ статья Что представляют собой вспышки на Солнце? Подробный ответ

▪ статья Гипнотизер, иллюзионист, фокусник (артист цирка иллюзионного жанра). Должностная инструкция

▪ статья Слоистые электроизоляционные пластмассы. Энциклопедия радиоэлектроники и электротехники

▪ статья Стабилизированный блок питания. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024