Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Энергетические установки на базе тепловых насосов. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Альтернативные источники энергии

Комментарии к статье Комментарии к статье

Введение

Теплоснабжение в условиях России с ее продолжительными и достаточно суровыми зимами требует весьма больших затрат топлива, которые превосходят почти в 2 раза затраты на электроснабжение. Основными недостатками традиционных источников теплоснабжения являются низкая энергетическая (особенно на малых котельных), экономическая и экологическая эффективность (традиционное теплоснабжение является одним из основных источников загрязнения крупных городов). Кроме того, высокие транспортные тарифы на доставку энергоносителей усугубляют негативные факторы, присущие традиционному теплоснабжению.

Нельзя не учитывать и такой серьезный термодинамический недостаток, как низкий эксергетический КПД использования химической энергии топлива для систем теплоснабжения, который в системах отопления составляет 6-10%.

Чрезвычайно велики затраты на тепловые сети, которые являются, вероятно, самым ненадежным элементом в системах централизованного теплоснабжения. Удельная аварийность для трубопроводов диаметром 1400 мм составляет одну аварию в год на 1 км длины, а для труб меньшего диаметра - около шести аварий. Если учесть, что общая протяженность тепловых сетей в России доставляет 650 тыс. км, а в полной замене нуждаются 300 тыс. км, становится очевидно, что строительство и поддержание тепловых сетей в рабочем состоянии требуют затрат, соизмеримых со стоимостью ТЭЦ или районных котельных.

Все перечисленные негативные факторы традиционного теплоснабжения настоятельно требуют интенсивного использования нетрадиционных методов.

Одним из таких методов является полезное использование рассеянного низкотемпературного (5-30°C) природного тепла или сбросного промышленного тепла для теплоснабжения с помощью тепловых насосов.

Тепловые насосы в силу того, что они избавлены от большинства перечисленных недостатков централизованного теплоснабжения, нашли широкое применение за рубежом, если в 1980 г. в США работало около 3 млн. теплонасосных установок, в Японии 0,5 млн., в Западной Европе 0,15 млн., то в 1993 г. общее количество работающих теплонасосных установок (ТНУ) в развитых странах превысило 12 млн., а ежегодный выпуск составляет более 1 млн. Массовое производство тепловых насосов налажено практически во всех развитых странах. По прогнозу Мирового энергетического комитета к 2020 г. в передовых странах доля отопления и горячего водоснабжения с помощью тепловых насосов составит 75%.

Основные обозначения, индексы и сокращения

Обозначения величин

  • с - теплоемкость, кДж/(кг? К);
  • d - влагосодержание водяных паров воздуха, кг/кг;
  • G - массовый расход, кг/с;
  • H - теплоперепад, Дж/кг, кДж/кг;
  • h - энтальпия, Дж/кг, кДж/кг;
  • р - давление, Па, кПа;
  • n - частота вращения, 1/c;
  • N - мощность, Вт, кВт, Мвт;
  • q - удельный расход теплоты, Дж/Дж, кДж/кДж;
  • Q - количество теплоты, Вт, кВт, Мвт;
  • s - энтропия, Дж/(кг К), Дж/(кг К);
  • t - температура,°C;
  • T - температура, К;
  • v - удельный объем, м3/кг;
  • х - степень сухости пара;
  • h - КПД;
  • h м - механический КПД;
  • p - степень повышения ( понижения) давления;
  • s - коэффициент сохранения давления.

Индексы

  • в - воздух;
  • вд - вода;
  • вл - влажный;
  • вн - внутренний;
  • к - конечный;
  • конд - конденсация;
  • п - пар;
  • см - смесь;
  • ср - средний;
  • сух - сухой;
  • р - расчетный;
  • s - насыщение;
  • i - внутренний;
  • 0 - начальный; расчетный; номинальный;
  • ж - жидкость.

Сокращения

  • КПД - коэффициент полезного действия;
  • ТНУ - тепловая насосная установка.

Принцип работы теплового насоса

Принцип работы теплового насоса вытекает из работ Карно и описания цикла Карно, опубликованного в его диссертации в 1824 г. Практическую теплонасосную систему предложил Вильям Томсон ( лорд Кельвин ) в 1852 г. Она была названа умножитель тепла и показывала, как можно холодильную машину эффективно использовать для целей отопления. В обосновании своего предложения, уже тогда, Томсон указывал, что ограниченность энергетических ресурсов не позволит непрерывно сжигать топливо в печах для отопления и что его умножитель тепла будет потреблять меньше топлива, чем обычные печи. Предложенный Томсоном тепловой насос ( ТН ) использовал воздух в качестве рабочего тела. Окружающий воздух засасывался в цилиндр, расширялся охлаждаясь от этого, а затем проходил теплообменник, где нагревался наружным воздухом. После сжатия до атмосферного давления воздух из цилиндра поступает в обогреваемое помещение, будучи нагретым до температуры выше окружающей. Фактически подобная машина была реализована в Швейцарии. Томсон заявил, что его ТН способен давать необходимое тепло при использовании только 3% энергии, затрачиваемой на отопление.

Дальнейшее свое развитие теплонасосные установки получили только в 20-х и 30-х годах 20 века, когда в Англии была создана первая установка предназначенная для отопления и горячего водоснабжения с использованием тепла окружающего воздуха. После этого начались работы в США, приведшие к созданию нескольких демонстрационных установок.

Первая крупная теплонасосная установка в Европе была введена в действие Цюрихе в 1938-1939 гг. В ней использовались тепло речной воды, ротационный компрессор и хладогент. Она обеспечивала отопление ратуши водой с температурой 60 С при мощности 175 кВт. Имелась система аккумулирования тепла с электронагревателем для покрытия пиковой нагрузки. В летние месяцы установка работала на охлаждение. В период с 1939 по 1945 года было создано еще 9 подобных установок, с целью сокращения потребления угля в стране. Некоторые из них успешно проработали более 30 лет.

Итак, в 1824 г. Карно впервые использовал термодинамический цикл для описания процесса, и этот цикл остается фундаментальной основой для сравнения с ним и оценки эффективности ТН. Тепловой насос можно рассматривать как обращенную тепловую машину. Тепловая машина получает тепло (рис. 1.1.1) от высокотемпературного источника и сбрасывает его при низкой температуре, отдавая полезную работу. Тепловой насос требует затраты работы для получения тепла при низкой температуре и отдачи его при более высокой.

Энергетические установки на базе тепловых насосов Энергетические установки на базе тепловых насосов
Рис.1.1.1. Термодинамическая схема теплового насоса и теплового двигателя. 1 -тепловой насос; 2 - тепловой двигатель.

Можно показать, что если обе эти машины обратимы (т. е. термодинамические процессы не содержат потерь тепла или работы ), то существует конечный предел эффективности каждой из них, и в обоих случаях это есть отношение Qн/W. Если бы это было не так то можно было бы построить вечный двигатель просто соединив одну машину с другой. Только в случае тепловой машины это отношение записывается в виде W/Qн и называется термическим КПД, а для теплового насоса оно остается в виде Qн/W и называется коэффициентом преобразования теплоты (Кт).

Если считать, что тепло изотермически подводится при температуре TL и изотермически отводится при температуре TH, а сжатие и расширение производятся при постоянной энтропии (рис. 1.1.2), работа подводится от внешнего двигателя, то коэффициент преобразования для цикла Карно будет иметь вид: Кт = TL /( TН - TL ) + 1 = TН / ( TН - TL )

Энергетические установки на базе тепловых насосов
Рис.1.1.2

Таким образом никакой тепловой насос не может иметь лучшей характеристики, и все практические циклы лишь реализуют стремление максимально приблизится к этому пределу.

Классификация тепловых насосов

В настоящее время создано и эксплуатируется большое число тепловых насосных установок, отличающихся по тепловым схемам, рабочим телам и по используемому оборудованию. По обозначению различных классов установок, в известных нам литературных источниках, нет единого установившегося мнения, встречаются различные обозначения и термины.

В связи с этим важное значение приобретает классификация установок, позволяющая проводить рассмотрение их свойств в соответствии с той или иной группой. Все типы тепловых насосных установок можно классифицировать по ряду сходных признаков. Каждый из них отражает только одну характерную особенность установки, поэтому в определении теплонасосной установки может быть два и более признака.

Классификацию теплонасосных установок следует осуществлять прежде всего по циклам их работы. Можно выделить несколько основных типов тепловых насосов:

  • воздушно-компрессорные тепловые насосы;
  • тепловые насосы с механической компрессией пара (парокомпрессионный цикл);
  • абсорбционные тепловые насосы;
  • тепловые насосы основанные на использовании эффекта Ранка;
  • тепловые насосы основанные на использовании двойного цикла Ренкина;
  • тепловые насосы, работающие по циклу Стирлинга;
  • тепловые насосы, работающие по циклу Брайтона;
  • термоэлектрические тепловые насосы.
  • - обращенный топливный элемент;
  • тепловые насосы с использованием теплоты плавления;
  • тепловые насосы с использованием механохимического эффекта;
  • тепловые насосы с использованием магнетокалорического эффекта.

Все тепловые насосы по принципу взаимодействия рабочих тел можно объединить в две основные группы: 1) открытого цикла, в которых рабочее тело забирается и отдается во внешнюю среду; 2) замкнутого цикла, в которых рабочее тело движется по замкнутому контуру, взаимодействуя с источником и потребителем теплоты лишь посредством теплообмена в аппаратах поверхностного типа.

Различают одно- и двухступенчатые и каскадные ТНУ, а также ТНУ с последовательным соединением по нагреваемому и охлаждаемому теплоносителям с противоточным их движением.

По назначению: стационарные и передвижные, для аккумулирования тепловой энергии и ее транспорта и утилизации сбросного тепла.

По производительности: крупные, средние, мелкие.

По температурному режиму: высокотемпературные, среднетемпературные и низкотемпературные.

По режиму работы: стационарные, нестационарные, непрерывные или цикличные, нестационарные с аккумулятором тепловой энергии.

По виду холодильного агента: воздушные, аммиачные, фреоновые, на смесях холодильных агентов.

По виду потребляемой энергии: с приводом от электродвигателя или газовой турбины или от газовой турбины, работающие на вторичных энергоресурсах и др.

Смотрите другие статьи раздела Альтернативные источники энергии.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Таурин не является биомаркером старения 22.06.2025

В поисках биомаркеров старения ученые все чаще обращаются к молекулам, которые ранее демонстрировали многообещающие результаты на животных. Одной из таких субстанций стал таурин - аминокислота, известная широкому кругу людей как компонент энергетических напитков. В последние годы ей приписывали способность замедлять возрастные изменения и даже продлевать жизнь. Однако новое масштабное исследование, проведенное учеными из Национального института здоровья США (NIH), поставило под сомнение ее значимость в контексте старения человека. Исследование включало сравнительный анализ уровня таурина в крови у трех видов: людей, макак-резусов и лабораторных мышей. Авторы проекта изучали, как меняется концентрация вещества в организме от молодого возраста до глубокой старости. Ожидалось, что таурин будет снижаться с возрастом, подтверждая его возможную роль как биомаркера старения. Однако полученные данные оказались куда более сложными. Как пояснила Мария Эмилия Фернандес, одна из соавторов ра ...>>

Стандарт NFC 15 22.06.2025

Технология ближней бесконтактной связи NFC стала повседневным инструментом для миллионов пользователей по всему миру. Она обеспечивает быстрые и удобные платежи, позволяет открывать двери, оплачивать проезд и мгновенно подключать устройства. Однако, несмотря на широкое распространение, сам стандарт NFC развивался почти незаметно - без резонансных версий и громких анонсов. И вот теперь, в июне 2025 года, организация NFC Forum представила пятнадцатую версию протокола, которая принесет ощутимые улучшения в ежедневном взаимодействии с гаджетами. Одним из ключевых изменений стало увеличение радиуса действия: если раньше для работы NFC нужно было почти прикасаться телефоном к терминалу, то теперь соединение возможно уже на расстоянии до двух сантиметров. Хотя разница кажется незначительной, именно этот промежуток в доли сантиметра часто мешал корректной работе - пользователи нередко вынуждены были искать "тот самый угол" или точку, где произойдет считывание. В реальности некоторые устр ...>>

Эффективная защита от коррозии 21.06.2025

Коррозия - один из главных врагов железа и его сплавов, ежегодно причиняющий ущерб на миллиарды долларов в инфраструктуре, транспорте и промышленности. Существующие антикоррозионные решения, такие как цинковое покрытие, со временем теряют эффективность: они отслаиваются, повреждаются или дают микротрещины, открывая путь влаге и соли. На этом фоне ученые активно ищут способы сделать защиту от коррозии более стойкой, долговечной и экономичной. Группа исследователей из Института химии Еврейского университета в Иерусалиме предложила новый подход к решению этой задачи. В отличие от традиционных защитных покрытий, которые опираются лишь на физическую адгезию к металлу, их метод включает создание прочной химической связи на молекулярном уровне. Основа разработки - двухслойная структура, где первым наносится слой N-гетероциклических карбенов, а вторым - полимер высокой прочности. Карбены играют роль своеобразного "молекулярного суперклея", надежно соединяя металл и полимер в единую систе ...>>

Случайная новость из Архива

Карта памяти AGI MicroSD 2 ТВ 20.01.2024

Тайваньская компания AGI представила карту памяти MicroSD максимального объема в мире &#8211; 2 терабайта, подтверждая свое лидерство в области хранения данных.

Карта Supreme Pro TF138 обеспечивает выдающиеся показатели скорости чтения/записи до 170/160 Мб/с при использовании совместимого кардридера CR138. Кроме того, она оснащена функцией автоматической коррекции ошибок, высокоскоростным протоколом UHS-1 U3 и комплексной защитой от пыли, воды, ударов и других негативных воздействий.

Компании-конкуренты, такие как Kioxia и Micron, оперативно отреагировали, выпустив свои модели карт памяти емкостью в 2 терабайта.

Это значительное достижение в области носителей информации поднимает карту MicroSD на уровень премиум-класса. Для поклонников 4K-видео и обширных данных она становится идеальным выбором.

Релиз карты памяти AGI MicroSD 2 ТВ отмечает новый этап в развитии хранения данных, предоставляя пользователям высокую емкость, выдающуюся производительность и прочную защиту от внешних факторов. Это важное событие для потребителей, активно использующих большие объемы информации в своей повседневной жизни.

Новинка уже поступила в продажу за $229.

Другие интересные новости:

▪ Самое быстрое растение

▪ Клей прилипает и отлипает по команде

▪ Cмартфон Moto X Developer Edition для разработчиков

▪ Суши стало больше

▪ Передовые SSD-накопители от Intel

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Эффектные фокусы и их разгадки. Подборка статей

▪ статья Ручной копатель Паук. Советы домашнему мастеру

▪ статья Кто сделал первый двигатель? Подробный ответ

▪ статья Конфиденциальная информация - тоже тайна. Шпионские штучки

▪ статья Асинхронные электродвигатели. Энциклопедия радиоэлектроники и электротехники

▪ статья Схема, формирующая большие задержки. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025