Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Системы современных ветродвигателей. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Альтернативные источники энергии

Комментарии к статье Комментарии к статье

В настоящее время имеется много систем ветродвигателей, как с горизонтальной, так и с вертикальной осью вращения. Отличаются они друг от друга не только внешним видом и устройством, но и техническими возможностями в зависимости от того, для каких целей они применяются. По устройству приемника энергии ветра и по расположению его в воздушном потоке различают несколько систем ветродвигателей.

Мы уже говорили о ветродвигателях карусельного и барабанного типа. Известен еще так называемый роторный ветродвигатель (рис. 23). Его лопасти вращаются, как у карусельного ветродвигателя, в горизонтальной плоскости и приводят в движение вертикальный вал.

Системы современных ветродвигателей
Рис.23. Ветродвигатель роторного типа

Широко распространены в настоящее время крыльчатые ветродвигатели, самым древним типом которых и являются обычные ветряные мельницы. Основной частью любого крыльчатого ветродвигателя является ветровое колесо. Оно состоит из нескольких лопастей и вращается под действием ветра. При помощи пары конических шестерен, смонтированных на головке ветродвигателя (рис. 24), вращение колеса превращается в более быстрое движение вертикального вала или в возвратно-поступательное перемещение приводной штанги.

Системы современных ветродвигателей
Рис.24. Схема крыльчатого ветродвигателя

Для поворота головки и ветрового колеса на ветер у ветряных мельниц имеется водило, а у современных небольших ветродвигателей - хвост с вертикальным оперением на конце. У крупных крыльчатых ветродвигателей существуют и другие более сложные механизмы для автоматического установа ветрового колеса на ветер. Чтобы скорость вращения ветроколеса не превышала предельной, имеется специальное устройство для автоматического регулирования числа оборотов.

Обычно у поверхности земли воздушный поток вследствие различных препятствий бывает неравномерным, ослабленным, поэтому ветровое колесо устанавливают на высокой мачте или башне, выше препятствий.

По устройству ветровых колес современные крыльчатые ветродвигатели делятся на быстроходные и тихоходные.

У тихоходного ветродвигателя ветровое колесо состоит из большого числа лопастей (рис. 25). Оно легко трогается с места. Благодаря этому тихоходный ветродвигатель удобен для работы с поршневым насосом и другими машинами, требующими при пуске в работу большое начальное усилие.

Системы современных ветродвигателей
Рис.25. Современный многолопастный ветродвигатель TB-5 мощностью до 2,5 лошадиной силы

Тихоходные ветродвигатели в основном используются в районах, где скорость ветра в среднем не превышает 4,5 метра в одну секунду. Все механизмы многопластных ветродвигателей, как правило, несколько проще, чем у быстроходных. Однако ветровые колеса тихоходных ветродвигателей представляют собой довольно громоздкие конструкции. При больших размерах таких колес трудно создать необходимую устойчивость, особенно при высоких скоростях ветра. Поэтому в настоящее время многолопастные ветродвигатели строятся с диаметрами ветровых колес не более 8 метров. Мощность такого ветродвигателя достигает 6 лошадиных сил. Этой мощности вполне достаточно для того, чтобы подавать на поверхность воду из скважин глубиной до 200 метров.

Быстроходные ветродвигатели имеют в ветровом колесе не более четырех крыльев с обтекаемым профилем (см., например, рис. 27).

Системы современных ветродвигателей
Рис.27. Ветродвигатель 1-Д-18 мощностью до 30 киловатт

Это дает возможность им хорошо выдерживать очень сильные ветры. Даже при сильном и порывистом ветре хорошо устроенные механизмы регулирования создают равномерное вращение ветровых колес быстроходных ветродвигателей.

Эти положительные особенности быстроходных ветродвигателей позволяют им работать при переменном ветре любой силы.

Поэтому быстроходные ветродвигатели могут строиться с очень большими диаметрами ветровых колес, достигающими пятидесяти и более метров и развивающими мощность несколько сот лошадиных сил.

Благодаря высокой и устойчивой равномерности у ветровых колес быстроходные ветродвигатели используются для привода самых разнообразных машин и электрических генераторов. Современные быстроходные ветродвигатели являются универсальными машинами.

Сравнение ветродвигателей различных систем удобно производить, вводя понятие о нормальной быстроходности. Эта быстроходность определяется отношением окружной скорости на внешнем конце вращающейся лопасти при скорости ветра 8 метров в секунду к скорости воздушного потока.

Лопасти карусельных, роторных и барабанных ветродвигателей при работе перемещаются вдоль воздушного потока и скорость любой их точки никогда не может быть больше скорости ветра. Поэтому нормальная быстроходность ветродвигателей этих типов будет всегда меньше единицы (так как числитель будет меньше знаменателя).

Ветровые колеса крыльчатых ветродвигателей вращаются поперек направления ветра, а поэтому скорость движения концевых частей у их крыльев достигает больших величин. Она может быть в несколько раз больше скорости воздушного потока. Чем меньше лопастей и лучше их профиль, тем меньшее сопротивление испытывает ветровое колесо. Значит, тем быстрее оно вращается. Лучшие образцы современных крыльчатых ветродвигателей имеют нормальную быстроходность, достигающую девяти единиц. Большинство ветродвигателей заводского производства имеет быстроходность, равную 5-7 единицам. Для сравнения отметим, что даже лучшие крестьянские мельницы имели быстроходность, равную всего 2-3 единицам (и в этом смысле они являются более совершенными, чем карусельные, роторные и барабанные ветродвигатели).

С ростом числа лопастей у ветрового колеса увеличивается его способность трогаться с места при небольших скоростях ветра. Поэтому многолопастные крыльчатые ветродвигатели, у которых суммарная площадь лопастей составляет 60-70 процентов от ометаемой поверхности (см. рис. 20) ветрового колеса, вступают в работу при скоростях ветра 3-3,5 метра в секунду.

Системы современных ветродвигателей
Рис.20. Мельница козлового типа

Быстроходные же ветродвигатели с малым числом лопастей трогаются с места при скоростях ветра от 4,5 до 6 метров в секунду. Поэтому их приходится пускать в работу или без нагрузки или при помощи специальных устройств.

Хорошее трогание с места и простота конструкции карусельных, роторных и барабанных ветродвигателей подкупают многих изобретателей и конструкторов, которые считают их идеальными ветродвигателями. В действительности, однако, эти машины имеют ряд существенных недостатков. Эти недостатки затрудняют их использование даже с такими распространенными и простыми машинами, как поршневые насосы и жерновые мукомольные установки.

Ветродвигатели с приемниками энергии ветра роторного типа очень плохо используют энергию воздушного потока, коэффициент использования энергии ветра у них в 2-2,5 раза меньше, чем у крыльчатых ветродвигателей. Поэтому при равных ометаемых лопастями поверхностях крыльчатые ветродвигатели могут развить мощность в 2- 2,5 раза большую, чем карусельные, роторные и барабанные ветросиловые установки.

Ветродвигатели роторного типа в настоящее время используются лишь в виде небольших кустарных установок мощностью до 0,5 лошадиной силы. Например, они находят применение для привода в движение различных вентиляционных устройств в помещениях для скота, кузницах и других производственных помещениях в сельском хозяйстве.

От чего зависит мощность ветродвигателя?

Мы знаем, что энергия воздушного потока непостоянна, поэтому любой ветряной двигатель имеет переменную мощность. Мощность любого ветродвигателя зависит от скорости ветра. Установлено, что при увеличении скорости ветра в два раза мощность на крыльях ветродвигателя увеличивается в 8 раз, а при росте скорости воздушного потока в 3 раза мощность ветродвигателя увеличивается в 27 раз.

Мощность ветродвигателя зависит также и от величины приемника энергии ветра. В этом случае она пропорциональна той площади, которую ометают лопасти ветрового колеса или ротора. Например, у крыльчатых ветродвигателей ометаемая лопастями поверхность будет площадью круга, который описывает конец лопасти за один полный оборот. У барабанных, карусельных и роторных ветродвигателей ометаемая лопастями поверхность представляет площадь прямоугольника с высотой, равной длине лопасти, и с шириной, равной расстоянию между наружными кромками противоположных лопастей.

Однако любое ветровое колесо или ротор превращает в полезную механическую работу лишь часть энергии воздушного потока, проходящего через ометаемую лопастями поверхность. Эта часть энергии определяется коэффициентом использования энергии ветра. Величина коэффициента использования энергии ветра всегда меньше единицы. У лучших современных быстроходных ветродвигателей этот коэффициент достигает 0,42. У серийных заводских быстроходных и тихоходных ветродвигателей коэффициент использования энергии ветра обычно равен 0,30-0,35; это значит, что примерно лишь одна треть энергии воздушного потока, проходящего через ветровые колеса ветродвигателей, превращается в полезную работу. Остальные две трети энергии остаются не использованными.

Советский ученый Г. X. Сабинин на основании расчетов установил, что даже у идеального ветряка коэффициент использования энергии ветра равен только 0,687.

Почему же этот коэффициент не может быть равным или даже близким к единице?

Объясняется это тем, что часть энергии ветра затрачивается на образование вихрей у лопастей и скорость ветра за ветроколесом падает.

Таким образом, фактическая величина мощности ветродвигателя зависит от коэффициента использования энергии ветра. Мощность ветродвигателя пропорциональна его значению. Это значит, что с увеличением коэффициента использования энергии ветра увеличивается мощность ветродвигателя, и наоборот.

Барабанные, карусельные и роторные ветродвигатели с простейшими лопастями имеют очень низкие коэффициенты использования энергии ветра. Их значения колеблются в широких пределах от 0,06 до 0,18. У крыльчатых же двигателей этот коэффициент находится в пределах от 0,30 до 0,42.

Кроме этого, полезная мощность любого ветродвигателя пропорциональна еще коэффициенту полезного действия механизма передачи, а также плотности воздуха. Обычно коэффициент полезного действия механизмов современных ветродвигателей равен от 0,8 до 0,9.

Из сказанного о мощности ветродвигателя следует, что при данном ветре тот ветродвигатель будет иметь более высокую мощность, у которого через поверхность, ометаемую крыльями, протекает наибольшее количество воздушного потока, а лопасти ветроколеса имеют хорошо обтекаемый профиль.

Автор: Кармишин А.В.

Смотрите другие статьи раздела Альтернативные источники энергии.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Лабораторная модель прогнозирования землетрясений 30.11.2025

Предсказание землетрясений остается одной из самых сложных задач геофизики. Несмотря на развитие сейсмологии, ученые все еще не могут точно определить момент начала разрушительного движения разломов. Недавние эксперименты американских исследователей открывают новые горизонты: впервые удалось наблюдать микроскопические изменения в контактной зоне разломов, которые предшествуют землетрясению. Группа под руководством Сильвена Барбота обнаружила, что "реальная площадь контакта" - участки, где поверхности разлома действительно соприкасаются - изменяется за миллисекунды до высвобождения накопленной энергии. "Мы открыли окно в сердце механики землетрясений", - отмечает Барбот. Эти изменения позволяют фиксировать этапы зарождения сейсмического события еще до появления традиционных сейсмических волн. Для наблюдений ученые использовали прозрачные акриловые материалы, через которые можно было отслеживать световые изменения в зоне контакта. В ходе искусственного моделирования примерно 30% ко ...>>

Музыка как естественный анальгетик 30.11.2025

Ученые все активнее исследуют немедикаментозные способы облегчения боли. Одним из перспективных направлений становится использование музыки, которая способна воздействовать на эмоциональное состояние и когнитивное восприятие боли. Новое исследование международной группы специалистов демонстрирует, что даже кратковременное прослушивание любимых композиций может значительно снижать болевые ощущения у пациентов с острой болью в спине. В эксперименте участвовали пациенты, обратившиеся за помощью в отделение неотложной помощи с выраженной болью в спине. Им предлагалось на протяжении десяти минут слушать свои любимые музыкальные треки. Уже после этой короткой сессии врачи фиксировали заметное уменьшение интенсивности боли как в состоянии покоя, так и при движениях. Авторы исследования подчеркивают, что музыка не устраняет саму причину боли. Тем не менее, она воздействует на эмоциональный фон пациента, снижает уровень тревожности и отвлекает внимание, что в сумме приводит к субъективном ...>>

Алкоголь может привести к слобоумию 29.11.2025

Проблема влияния алкоголя на стареющий мозг давно вызывает интерес как у врачей, так и у исследователей когнитивного старения. В последние годы стало очевидно, что границы "безопасного" употребления спиртного размываются, и новое крупное исследование, проведенное международной группой ученых, вновь указывает на это. Работы Оксфордского университета, выполненные совместно с исследователями из Йельского и Кембриджского университетов, показывают: даже небольшие дозы алкоголя способны ускорять когнитивный спад. Команда проанализировала данные более чем 500 тысяч участников из британского биобанка и американской Программы миллионов ветеранов. Дополнительно был выполнен метаанализ сорока пяти исследований, в общей сложности включавших сведения о 2,4 миллиона человек. Такой масштаб позволил оценить не только прямую связь между употреблением спиртного и развитием деменции, но и влияние генетической предрасположенности. Один из наиболее тревожных результатов касается людей с повышенным ге ...>>

Случайная новость из Архива

Экологичный автомобиль 03.10.2007

Сотрудники и студенты университета Уорвика (Великобритания) создали гоночный автомобиль, в котором по максимуму использованы экологически безвредные материалы.

Корпус изготовлен из пластмассы, армированной волокном конопли, в шинах использован полимер, синтезированный из крахмала картошки, тормозные колодки спрессованы из шелухи орехов кешью. Горючее - этиловый спирт, получаемый из растительных материалов, смазочное масло - тоже растительное.

Шасси выполнено из стали, но сталь - материал, не создающий отходов, она пригодна для переплавки и повторного использования. По мнению конструкторов, автомобиль может достичь скорости 240 километров в час. Во всяком случае, при старте с места он за 4 секунды развивает скорость 100 километров в час.

В следующей модели руководитель проекта Бенджамин Вуд намерен довести долю биоразложимых или пригодных для повторного использования материалов до 95%.

Другие интересные новости:

▪ Компактный компьютер MINISFORUM GK50

▪ Шагомер XXI века

▪ Секрет долголетия гинкго

▪ Круглая соль

▪ Передача данных через черные дыры

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Личный транспорт: наземный, водный, воздушный. Подборка статей

▪ статья Шарль Морис де Талейран-Перигор. Знаменитые афоризмы

▪ статья Что такое импрессионизм? Подробный ответ

▪ статья Кипрей узколистный. Легенды, выращивание, способы применения

▪ статья Вместо реле холодильника. Энциклопедия радиоэлектроники и электротехники

▪ статья Радиостанция на трех транзисторах. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:




Комментарии к статье:

Гость
Ау, люди! Когда же вы наконец вырастете из детских штанищек?! Всё время толкуете о простых приемниках потока ветра... Точно как бы вешаете белье на просушку! А сами уже мечтаете на Марсе яблони посадить, а может еще и привозить марсианские яблони землякам? [roll] [lol]


Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025