В брошюре даны сведения по конструкции и техническим характеристикам выключателей с воздухонаполненным отделителем 110-220 кв, описание устройства и работы отдельных элементов выключателя. Приведены рекомендации по практическому обслуживанию и ремонтам. Рассмотрены наиболее рациональные методы наладки и испытаний воздушных выключателей, а также технические мероприятия по повышению надежности их работы. Брошюра иллюстрирована примерами наиболее характерных отказов и неполадок в работе воздушных выключателей. Дано описание мер, предотвращающих или устраняющих эти отказы и неполадки. Особое внимание сосредоточено на таких приемах ремонта и эксплуатации воздушных выключателей, от которых в наибольшей степени зависит надежная и безаварийная их работа. Брошюра рассчитана на электрослесарей и монтеров, которые занимаются эксплуатацией и ремонтом воздушных выключателей с воздухонаполненным отделителем 110-220 кв, и может быть полезной также для персонала организаций, ведущих монтаж и наладку этих выключателей.
Предсказание землетрясений остается одной из самых сложных задач геофизики. Несмотря на развитие сейсмологии, ученые все еще не могут точно определить момент начала разрушительного движения разломов. Недавние эксперименты американских исследователей открывают новые горизонты: впервые удалось наблюдать микроскопические изменения в контактной зоне разломов, которые предшествуют землетрясению.
Группа под руководством Сильвена Барбота обнаружила, что "реальная площадь контакта" - участки, где поверхности разлома действительно соприкасаются - изменяется за миллисекунды до высвобождения накопленной энергии. "Мы открыли окно в сердце механики землетрясений", - отмечает Барбот. Эти изменения позволяют фиксировать этапы зарождения сейсмического события еще до появления традиционных сейсмических волн.
Для наблюдений ученые использовали прозрачные акриловые материалы, через которые можно было отслеживать световые изменения в зоне контакта. В ходе искусственного моделирования примерно 30% ко ...>>
Ученые все активнее исследуют немедикаментозные способы облегчения боли. Одним из перспективных направлений становится использование музыки, которая способна воздействовать на эмоциональное состояние и когнитивное восприятие боли. Новое исследование международной группы специалистов демонстрирует, что даже кратковременное прослушивание любимых композиций может значительно снижать болевые ощущения у пациентов с острой болью в спине.
В эксперименте участвовали пациенты, обратившиеся за помощью в отделение неотложной помощи с выраженной болью в спине. Им предлагалось на протяжении десяти минут слушать свои любимые музыкальные треки. Уже после этой короткой сессии врачи фиксировали заметное уменьшение интенсивности боли как в состоянии покоя, так и при движениях.
Авторы исследования подчеркивают, что музыка не устраняет саму причину боли. Тем не менее, она воздействует на эмоциональный фон пациента, снижает уровень тревожности и отвлекает внимание, что в сумме приводит к субъективном ...>>
Проблема влияния алкоголя на стареющий мозг давно вызывает интерес как у врачей, так и у исследователей когнитивного старения. В последние годы стало очевидно, что границы "безопасного" употребления спиртного размываются, и новое крупное исследование, проведенное международной группой ученых, вновь указывает на это. Работы Оксфордского университета, выполненные совместно с исследователями из Йельского и Кембриджского университетов, показывают: даже небольшие дозы алкоголя способны ускорять когнитивный спад.
Команда проанализировала данные более чем 500 тысяч участников из британского биобанка и американской Программы миллионов ветеранов. Дополнительно был выполнен метаанализ сорока пяти исследований, в общей сложности включавших сведения о 2,4 миллиона человек. Такой масштаб позволил оценить не только прямую связь между употреблением спиртного и развитием деменции, но и влияние генетической предрасположенности.
Один из наиболее тревожных результатов касается людей с повышенным ге ...>>
Случайная новость из Архива
Материал-изолятор, являющийся проводником на его гранях
14.06.2018
Ученые-физики из университета Цюриха обнаружили материал, относящийся к новому классу топологических изоляторов высшего порядка. Грани кристаллических твердых тел из этих материалов проводят электрический ток почти без сопротивления, в то время, как остальная часть материала остается изолятором. Такие уникальные свойства новых материалов могут оказаться очень полезными для создания новых видов электронных устройств и, безусловно, для создания квантовых вычислительных систем.
Топология, наука, являющаяся частью материаловедения, занимается исследованиями свойств твердых частиц и тел, защищенных от деформаций и воздействий различных внешних факторов. Одним из направлений этой науки являются исследования топологических изоляторов, кристаллических материалов, которые проводят электрический ток только в поверхностном слое. При этом, за счет некоторых физических эффектов проводящие поверхности не могут быть переведены в изоляционное состояние.
Теоретические расчеты, проведенные физиками, показали, что свойства топологических изоляторов высшего порядка должны быть крайне стабильными. Другими словами, на электропроводность граней кристаллов не должны влиять примеси и другие нарушения кристаллической решетки. Кроме этого, грани кристаллов не нуждаются в дополнительной обработке или в каком-нибудь инициировании для получения токопроводящих свойств. И даже если кристалл вдруг сломается, то электрический ток все равно продолжит течь по нему по вновь образовавшимся граням.
Данные исследования находятся сейчас по большей мере в теоретической области. Но исследователи уже предложили один материал, который может являться топологическим изолятором высшего порядка, теллурид олова. "В скором времени мы найдем и другие материалы, обладающие подобными свойствами" - рассказывает профессор Титус Неуперт (Titus Neupert), - "Грани этих материалов будут работать как своего рода "шоссе" для электронов, т.е. они могут быть использованы в качестве токопроводящих дорожек электронных цепей. Более того, топологические изоляторы могут быть объединены с магнитными, полупроводниковыми и сверхпроводящими материалами, что позволит использовать их для создания квантовых компьютеров".