Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Аэросани Триумф. Личный транспорт

Личный транспорт: наземный, водный, воздушный

Справочник / Личный транспорт: наземный, водный, воздушный

Комментарии к статье Комментарии к статье

Сани, о которых пойдет речь, - вторая модель нашей совместной постройки. Первая была сделана годом раньше и явилась как бы пробой сил и возможностей. Тот "аппарат" получился прочный, но тяжелый - из-за кузова, для каркаса которого мы не нашли ничего лучше обычных стальных труб Ø25 ми. По той же причине и скорость, особенно по целине, удавалось развить намного меньшую, чем хотелось бы.

Известно, что если грузоподъемность аэросаней задана заранее, то борьба за скорость может идти по трем направлениям: повышение эффективности силовой установки, снижение собственной массы и уменьшение силы сопротивления движению. (Последняя складывается из сопротивления скольжению и аэродинамического сопротивления.) Поэтому при проектировании и изготовлении второй модели аэросаней мы старались максимально выполнить два основных условия: сделать машину с минимальной собственной массой и добиться наименьшего сопротивления движению. Все это в расчете на двигатель мощностью 25-28 л. с.

Аэросани Триумф
В результате получились двухместные сани, выполненные по трехлыжной схеме с передней рулевой лыжей

Общая компоновка машины - расположение сидений, силового агрегата, лыж и других элементов, определяющих центровку, - выполнена с таким расчетом, чтобы обеспечить по возможности равномерное распределение нагрузки на лыжи, снизить центр тяжести и приблизить к земле линию силы тяги винта. Чтобы предотвратить опрокидывание машины, колея задних лыж выбрана большой - 1800 мм. Цельнометаллический, несущий, однодверный кузов склепан из листового дюралюминия. Его основой служит сужающаяся по высоте в направлении передка балка. Ее верхняя часть служит полом, переходящим в спинку заднего сиденья, нижняя образует днище. Силовой набор содержит 8 шпангоутов и 11 стрингеров. От шпангоута № 5 стрингеры сдвоены симметрично оси кузова. Для облегчения в них проделаны отверстия, кромки которых для повышения жесткости отбортованы под углом 45°. Четыре отверстия Ø110 мм в полу кузова пришлось пробить, чтобы подводить клепальный инструмент (поддержки) для крепежных работ в труднодоступных местах.

Несущая часть изготовлена из листового дюралюминия марки Д16Т толщиной 1 мм. Для соединений элементов использовался гнутый угловой профиль 16X16X1,5 мм из материала АМГ6.

Поскольку передняя и задняя законцовки кузова представляют собой поверхности двойной кривизны, их собирали на заклепках из заранее выкроенных элементов. Каждому предварительно придавалась куполообразная форма. Крыша также сделана выпуклой, но цельной: кривизна ее поверхности невелика. На боковую обшивку пошел дюралюминий толщиной 0,5 мм. Для повышения жесткости боковины подкреплены ребрами. "Скелет" обшит снаружи дюралюминием толщиной 1 мм, а изнутри - 0,5 мм. Так же составлены шпангоуты и стрингеры.

Следует заметить, что сиденья как таковые отсутствуют. Их заменяют ниши в полу, куда укладываются подушки сидений из поролона, обтянутые кожзаменителем. У переднего спинка закреплена на кронштейнах, позволяющих ей откидываться вперед для удобства посадки пассажира. Спинки тоже поролоновые, с обтяжкой из кожзаменителя.

В местах повышенной жесткости кузова приклепаны накладки, к которым привернуты кронштейны крепления труб подвески. Горизонтальная поверхность моторного отсека такт же усилена 3-миллиметровой накладкой из Д16Т.

Аэросани Триумф
Рис. 1. Общий вид аэросаней (нажмите для увеличения): 1 - винт, 2 - капот двигателя, 3 - двигатель, 4 - кузов, 5 - бензобак, 6 - дверной замок-ручка, 7 - дверь, 8 - ветровое стекло, 9 - передняя лыжа, 10 - фара, 11 - рулевое колесо, 12 - сиденье, 13 - подвеска передней лыжи, 14 - задние лыжи, 15 - подвеска задних лыж, 16 - ограждение винта с шайбами и габаритными огнями

Аэросани Триумф
Рис. 2. Конструкция кузова (нажмите для увеличения): 1 - обшивка, 2 - поперечные перегородки, 3 - продольные перегородки, 4 - бортовые элементы жесткости, 5 - ниши сидений, 6 - пол кабины (сечения увеличены)

Аэросани Триумф
Рис. 3. Задняя лыжа (поперечный разрез): 1 - подошва, 2 - подрез, 3 - коробчатый корпус лыжи, 4 - шпангоут корпуса, 5 - кронштейн, 6 - палец, 7 - амортизатор, 8 - втулка рычага подвески, 9 - продольная перегородка с усиливающей накладкой

Аэросани Триумф
Рис. 4. Механизм рулевого управления и подвеска передней лыжи (нажмите для увеличения): 1 - лыжа (в разрезе), 2 - кронштейн подвески, 3 - резиновый ограничитель, 4 - траверса, 5 - пружина тяги, б - шпангоут кузова, 7 - продольная перегородка кузова, 8 - основание, 9 - рулевой рычаг, 10 - трос, 11 - рулевое колесо, 12 - кронштейн, 13 - рулевой вал, 14 - барабан, 15 - игольчатый подшипник (№ 942-25), 16 - вал, 17 - стакан, 18 - шпангоут кузова, 19 - подшипник (№ 7207), 20 - тяга, 21 - рычаг

Остекление из органического стекла толщиной 3 мм.

Кузов окрашен двумя слоями эмали МЛ-197, нанесенной на слой грунта ГФ-020. Цвет комбинированный: низ оранжевый, верх голубой. Вес кузова с остеклением 35 кг.

Винтомоторная установка включает двигатель, редуктор и винт изменяемого шага. Применяя редуктор, мы руководствовались тем, что он позволяет более выгодно использовать мощность двигателя, смещая частоту вращения винта в область до 2 тыс. об/мин (макс.). В результате более высокий КПД, чем у меньшего винта, работающего на больших оборотах. Возможность же изменения углов установки лопастей в процессе движения привлекала нас тем, что позволяла изменять тяговое усилие вплоть до реверса и осуществлять аэродинамическое торможение.

Конструкция редуктора и механизма изменения шага приведена на рисунке 6. Проектировались они под имеющийся двигатель "Цундапп" (25 л. с.). Поэтому позднее, при использовании мотора М-63 "Урал" (28 л. с.), для монтажа редуктора пришлось изготовить переходный фланец. С применением двигателя М-63 общий вес силового агрегата снизился на 10 кг и составил 65 кг.

Редуктор состоит из корпуса и удлинителя. В корпусе смонтирована зубчатая передача, а удлинитель служит опорой вала винта. Корпус сварной, стальной. Он образован фланцем и приваренной к нему обечайкой из листовой стали толщиной 2 мм. Внутри вварены гнезда для подшипников, имеющие ребра жесткости. Корпус также оребрен. После сварки он был подвергнут для снятия внутренних напряжений термообработке. Удлинитель изготовлен по такой же технологии. Применяемые шестерни цилиндрические, прямозубые; числа зубьев Z1= 32, Z2 = 60, модуль 1,75, ширина венца b = 25. Шестерни подобраны готовые, доработки сведены до минимума. Они посажены на валы на призматических шпонках. Валы изготовлены из стали 30ХГСА. Для облегчения они сделаны полыми, термообработаны до твердости 42... 45 ед., вращаются в радиально-упорных шарикоподшипниках, натяг в которых регулируется подбором толщины компенсаторов. Крутящий момент от двигателя передается на первичный вал через упругую резиновую муфту. В редуктор заливается 100 мл трансмиссионного масла.

В основу механизма изменения шага положен принцип, широко применяемый в авиации. Разница лишь в приводе: авиационный обычно гидравлический, у нас - механический. Механизм смонтирован во втулке винта и работает следующим образом.

Каждая лопасть в комлевой части имеет хвостовик, состоящий из фланца и резьбовой части (М20х1,5). Хвостовик вворачивается в вал втулки, также имеющий фланец. После установки лопасти фланцы стягиваются хомутом. Таким образом, лопасть оказывается жестко связанной с валом втулки, и ее угловое положение будет соответствовать угловому положению вала. Последний приводится во вращение поводком, с которым соединяется через торцевую шпонку. Поводок получает вращение от вилки; она вместе со штоком может двигаться поступательно относительно оси вала винта. Шток через систему рычагов и тяг связан с ручкой управления шагом, расположенной справа от водителя. Она имеет 10 фиксированных положении, позволяющих изменять тяговое усилие в зависимости от дорожных условий. Двигая "от себя", мы заставляем вилку перемещаться влево (по рисунку); при крайнем ее положении лопасти повернутся на большой шаг. Беря ручку "на себя", мы переводим лопасти на малый шаг и далее до реверса; среднее ее положение соответствует нулевой тяге. Номинальный ход штока равен 30 мм, ему соответствует поворот лопасти на 60°. Все детали механизма изготовлены из стали 30ХГСА. Центробежная сила от лопасти воспринимается упорным подшипником.

Назначение центробежных грузов заключается в следующем. При вращении винта на грузы действует центробежная сила, создающая момент, поворачивающий лопасти в сторону увеличения шага. Этот эффект создает натяг в цепи управления и уменьшает усилие на ручке. В качестве грузов использованы стальные шары Ø25 мм.

На рисунке изображена лопасть, ее геометрия и основные размеры. Порядок изготовления каждой из них таков.

Из миллиметровой фанеры вырезаются 20 полос размером 135X600 мм. Заготовки склеиваются в пакет эпоксидной смолой в специальном приспособлении, которое обеспечивает пакету заданную крутку (25°) и создает необходимое сжатие. После этого лопасть обрабатывается по контуру и выпуклой стороне профиля; плоская сторона получается готовой уже после склейки. Правильность профиля контролируется шаблонами. Затем лопасть шлифуется, шпаклюется и окрашивается. Геометрия лопастей, их размеры и вес должны быть строго одинаковыми. Их параметры выбраны на основании анализа существующих конструкций и изучения литературы.

Скоростные показатели аэросаней во многом определяет ходовая часть, и прежде всего лыжи. Они должны быть не только прочными и жесткими, но и легкими, иметь хорошее скольжение, быть технологичными в изготовлении.

Аэросани Триумф
Рис. 5. Схема тросовой проводки рулевого управления: 1 - рулевой рычаг, 2 - блок, 3 - трос, 4 - барабан рулевого вала

Аэросани Триумф
Рис. 6. Механизм изменения шага винта и редуктор (нажмите для увеличения): 1 - корпус втулки винта, 2 - поводок, 3 - крышка втулки, 4 - шарикоподшипник (№ 36101Е3), 5 - стяжной болт, 6 - игольчатый подшипник (№ 942-25), 7 - упорный подшипник (№ 8205), 8 - центробежный груз, 9 - хомут, 10 - хвостовик лопасти, 11 - лопасть, 12 - вал винта, 13 - подшипник (№ 36207), 14 - проставка-удлинитель, 15 - корпус редуктора, 16 - шестерня ведомая (Z =60), 17 - подшипник (№ 36205), 18 - шток привода управления шагом, 19 - переходный фланец, 20 - картер двигателя, 21 - маховик, 22 - корпус муфты, 23 - палец, 24 - резиновая муфта, 25 - первичный вал, 26 - шестерня ведущая (Z = 32), 27 - подшипник (№ 36203), 28 - вилка механизма изменения шага (сечение А-А и вид В уменьшены)

Аэросани Триумф
Рис. 7. Лопасть винта (нажмите для увеличения)

Наши лыжи вполне удовлетворяют первым четырем требованиям, хотя несколько менее технологичны, чем хотелось бы: одних заклепок уходит на каждую около 700 штук. Конструкция каждой лыжи несущая, имеет форму замкнутого короба трапециевидного сечения и образована снизу подошвой, а сверху и с боков гнутой коробчатой обшивкой. Внутри по всей длине проходят две продольные перегородки. Все детали за исключением подошвы и направляющих подрезов сделаны из листового дюралюминия марки Д16Т.

Последовательность сборки. Сначала продольные перегородки склепываются с уголками и усиливающими накладками.

Последние изготовлены из листа Д16Т толщиной 3 мм, имеют длину 450 мм и расположены в средней части лыжи (в перегородках и накладках для облегчения сделаны отверстия диаметром от 25 до 50 мм). Затем между перегородками вклепываются шпангоуты (6 шт.). Полученный каркас накладывается на подошву и приклепывается к ней совместно с направляющими подрезами. Материал подошвы - нержавеющая сталь толщиной 0,5 мм. (Листовой полиэтилен как материал для поверхностей скольжения был нами опробован на первых аэросанях, он быстро изнашивался, особенно при езде по обледенелым дорогам.) Сборка лыжи завершается приклепыванием верхней обшивки по четырем основным швам: двум нижним с подошвой и двум верхним с уголками продольных перегородок. Для клепки верхних швов в коробчатой обшивке проделали ряд отверстий Ø85 мм, через них подводили поддержку. После клепки верх лыжи для герметизации оклеили дерматином. Вес передней лыжи составил 5,5 кг, задних, более длинных, - по 6,5 кг.

Обе задние лыжи подвешены на продольно-качающихся рычагах к ферме, образованной тремя трубами, прикрепленными к кузову в трех точках. В рычаги запрессованы текстолитовые втулки, на которых они вращаются относительно пальца. Амортизатор от мотоцикла "Ява" одним концом крепится к рычагу, другим - к ферме. Силовая ферма и рычаги изготовлены из хромансилевых труб. Для рычагов использовались трубы эллиптического сечения с большей осью эллипса 45 мм.

Устройство передней подвески и рулевого управления.

Аналогично задней, передняя лыжа подвешена на продольно-качающемся рычаге сварной конструкции. С рычагом посредством тяг связана система из семи пружин растяжения, взятых от задних тормозов автомобиля "Жигули". Ход подвески 100 мм. Для его ограничения служит резиновый буфер.

Рычаг подвески качается на траверсе, которая вместе с валом может поворачиваться от рулевого привода. Последний состоит из рулевого колеса (автомобильного типа), рулевого вала и тросовой системы. Трос проведен следующим образом: в барабане, посаженном на рулевой вал, просверлено диаметральное сквозное отверстие O3 мм. Сквозь него пропущен трос с таким расчетом, чтобы получились две одинаковые по длине ветви. Трос закреплен на барабане фиксатором (на рисунке не показан). Каждая ветвь делает вокруг барабана два оборота в противоположные стороны, пропускается через блоки и заделывается на рычаге. Степень нажатия троса регулируется специальным устройством. Кронштейн крепится к приборному щитку. Рулевое колесо совершает полтора оборота, что соответствует повороту лыжи на 60°.

Из дополнительного оборудования можно отметить следующее. Подвесные бензобаки, расположенные по бокам аэросаней, спаяны из оцинкованного железа, имеют внутренние перегородки. Обтекатели из пенопласта. Баки сообщаются между собой бензостойким резиновым шлангом, заливная горловина находится в левом из них.

На приборном щитке смонтированы: указатель скорости, тахометр, тумблер и сигнальная лампочка включения зажигания.

Указатель скорости - авиационного типа, тахометр самодельный, электронный. Электрооборудование включает батарейную систему зажигания и осветительные приборы (фара, габаритные огни). Двигатель запускается только от винта.

Аэросани были изготовлены за 10 месяцев, включая проектирование. Испытывались они по снегу различной твердости и под разной нагрузкой. Даже полностью загруженные сани очень легко идут по укатанному снегу при температуре воздуха и - 5°, и - 15°. Скорость при этом может превышать 100 км/ч. По снежной целине скорость достигала 30 км/ч (при движении без пассажира). Она определялась по спидометру автомобиля, едущего параллельно по шоссе. Движение по целине, пожалуй, один из самых тяжелых режимов для аэросаней: двигателю приходится работать почти на пределе, поэтому запас по мощности в 10-12 л. с. просто необходим, В связи с этим в настоящее время мы спроектировали и начали изготавливать звездообразный двухтактный двигатель, предназначенный специально для аэросаней. О нем разговор, возможно, еще впереди, после испытаний.

Авторы: О.Яковлев, В.Боков

 Рекомендуем интересные статьи раздела Личный транспорт: наземный, водный, воздушный:

▪ Мотор для летательного аппарата

▪ Микроавтомобиль Краб

▪ Воздушно-гидравлический планер

Смотрите другие статьи раздела Личный транспорт: наземный, водный, воздушный.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Определена масса света 09.09.2024

Вопрос о том, имеет ли свет массу, давно занимает умы ученых. Если бы оказалось, что фотон, частица света, действительно обладает ненулевой массой, это перевернуло бы наше понимание Вселенной и основополагающих законов физики. Недавнее исследование, проведенное командой ученых из Сычуаньского университета науки и техники, Китайской академии наук и Нанкинского университета, сделало значительный шаг в этом направлении, установив новый предел для возможной массы фотона. Исследование основывалось на анализе данных, собранных с помощью массива синхронизации пульсаров Паркса, а также на наблюдениях быстрых радиовсплесков - загадочных и мощных сигналов, исходящих из далеких галактик. Пульсары, являющиеся нейтронными звездами, испускающими регулярные пульсирующие лучи радиоволн, и радиовсплески, наблюдаемые в межгалактическом пространстве, предоставляют уникальные возможности для исследования природы света. Основное внимание в исследовании было уделено так называемой мере дисперсии - хар ...>>

Плазма способна изменять магнитные поля 09.09.2024

Взаимодействие плазмы с магнитными полями остается одной из ключевых загадок как в астрофизике, так и в разработке термоядерных реакторов. Плазма, состоящая из заряженных частиц, играет важную роль во многих космических и лабораторных процессах. От взаимодействия плазмы с магнитными полями зависит многое - от поведения звезд до перспектив создания устойчивой термоядерной энергии на Земле. Новое открытие ученых из Принстонской лаборатории физики плазмы в США обещает изменить наше понимание этих сложных процессов. Исследователи разработали инновационный метод, позволяющий с беспрецедентной точностью зафиксировать, как плазма взаимодействует с магнитными полями. С помощью протонной радиографии они смогли визуализировать эти взаимодействия, что ранее было недоступно. Процесс начинается с создания плазмы, которую получают, направляя мощный лазер на небольшой пластиковый диск. Одновременно создаются протоны - частицы, которые физики использовали в качестве диагностического инструмента. ...>>

Мужчины вредят природе больше женщин 08.09.2024

Вопрос о том, кто больше вредит окружающей среде - мужчины или женщины, оказался в центре внимания после публикации нового исследования шведских ученых. Результаты исследования показывают, что мужчины, по сравнению с женщинами, способствуют большему выбросу вредных веществ в атмосферу. Причем это связано не с профессиональной деятельностью или владением предприятиями, а с различиями в потребительском поведении. Исследование выявило, что мужчины тратят на 16% больше средств на товары и услуги, которые оказывают значительное негативное воздействие на окружающую среду. В первую очередь речь идет о продуктах, производство и использование которых сопровождается повышенным уровнем выбросов парниковых газов, способствующих глобальному потеплению. Хотя женщины расходуют сопоставимое количество денег, они выбирают товары и услуги, менее вредные для экологии. Наиболее заметная разница была обнаружена в расходах на автомобильное топливо. Мужчины значительно чаще покупают бензин и дизельное ...>>

Случайная новость из Архива

Недостача индия грозит производству сенсорных экранов 04.08.2013

На Земле исчерпаны запасы материала для производства сенсорных экранов: в связи с окончанием природных запасов индия производителям смартфонов, планшетов и сенсорных лэптопов предстоит освоить выпуск сенсорных экранов на базе других материалов.

Производителям смартфонов, планшетов и другой современной электроники в ближайшие годы предстоит освоить новые материалы, из которых они будут выпускать сенсорные экраны, потому что природные запасы ключевого компонента современных дисплеев - металла индия - вскоре могут закончиться. Эта проблема обсуждалась на прошедшей в Сан-Франциско промышленной конференции Semicon West.

В современных сенсорных экранах стоит пленка из оксида индия и олова (ITO), с помощью которой регистрируется нажатие. Данный материал используется по той причине, что он обладает высокими прозрачностью и проводимостью. Освоить новые материалы производители должны в промышленных масштабах уже в ближайшие годы, с учетом темпов роста объемов выпуска сенсорных устройств, подчеркивает GigaOM.

По данным NPD DisplaySearch, в 2013 г. общая площадь сенсорных экранов во всех выпущенных устройствах увеличится более чем в 2 раза - до 25,5 млн кв. м по сравнению с 12 млн кв. м в 2012 г. Ожидается, что к 2015 г. площадь увеличится до 35,9 млн кв. м. Спрос на сенсорные экраны значительно увеличивается также в связи с ростом рынка сенсорных ноутбуков, отмечают аналитики.

Одной из наиболее перспективных альтернатив пленки из оксида индия является графен - материал, который представляет собой решетку из атомов углерода. На одном из выступлений главный исполнительный и технический директор компании Nanotech Biomachines Уилл Мартинез (Will Martinez) продемонстрировал прозрачный лист, покрытый графеном. Мартинез несколько раз согнул этот лист, показав устойчивость к деформации, которой не может похвастаться оксид индия и олова.

Еще одной альтернативой применяемого в настоящее время материала является серебряная нанопроволока. Она также позволяет создавать гибкие дисплеи. В лабораторных условиях дисплей с таким покрытием был согнут около 100 тыс. раз без появления признаков деформации.

Графен и серебряная нанопроволока не только смогут заменить оксид индия, но и позволят создавать гибкие дисплей для надеваемых устройств. По прогнозу аналитиков Juniper Research, в период с 2013 по 2017 гг. рынок носимой электроники вырастет более чем в 4,5 раза - с 15 млн до 70 млн устройств.

Другие интересные новости:

▪ Наносенсор обнаружит пестициды на фруктах

▪ Поезд метро X-Wagen компании Siemens Mobility

▪ Микросхема GPS-приемника MG4200

▪ Вечная краска на основе плазмонных пикселей

▪ Оверклокерская память Kingston FURY Beast DDR5 RGB

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Цветомузыкальные установки. Подборка статей

▪ статья Тиски из пассатижей. Советы домашнему мастеру

▪ статья У какого народа до 1970-х годов существовала традиция вставлять в нос женщинам деревянную пробку? Подробный ответ

▪ статья Кабан. Советы туристу

▪ статья Дистанционное управление для компьютера. Энциклопедия радиоэлектроники и электротехники

▪ статья Чудесная нить. Химический опыт

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024