Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


С компасом через магнитные поля. Детская научная лаборатория

Детская научная лаборатория

Справочник / Детская научная лаборатория

Комментарии к статье Комментарии к статье

Теперь почти не осталось людей, которые с благодарностью пожмут вам руку за рассказ о том, что Земля круглая, приговаривая: "Спасибо, друг, всегда от тебя что-нибудь новенькое услышишь".

Но вот почему она вертится? Этот вопрос ставит в тупик не только школьника. Их ученые отцы тоже становятся задумчивыми, когда вечное вращение задает им это "почему". "Вероятно, магнетизм", - говорят они.

Итак, почему? Но... прежде о магнетизме вообще.

Электромагнитное поле из гвоздя и напильника

С помощью напильника или даже простого гвоздя можно. получить хорошо заметные магнитные поля. Достаточно обмотать их изолированным проводом и пустить по нему ток. Электроток, пройдя через витки, создаст поле, а сердечник резко усилит его. Сам сердечник такого простейшего соленоида, будь то гвоздь или напильник, станет магнитом. Но вместе с тем сердечник-магнит, сделанный из гвоздя, будет иметь принципиальное отличие от магнита из напильника. Как вы думаете, в чем состоит это отличие?

Об этом будет рассказано ниже. Но если вы захотите сами найти разницу, то проделайте следующие опыты.

Вокруг обыкновенного гвоздя намотайте изолированный провод толщиной 0,1-0,4 мм. Присоедините один конец обмотки к батарейке карманного фонаря (рис. 1). Насыпьте на стол мелких гвоздиков. Поднесите шляпку гвоздя к мелким гвоздикам, затем присоедините второй конец обмотки к батарейке. Мелкие гвозди мгновенно прилипнут к шляпке гвоздя-сердечника. При выключении- батарейки гвоздики тут же упадут.

С компасом через магнитные поля
Рис. 1

Сделаем теперь искусственный магнит из напильника. На наждачном круге сточите насечку с плоскостей напильника, отрежьте от него необходимую полоску. Затем полоску нужно тереть от центра к концам - противоположными полюсами магнитов. Жесткую стальную полоску можно искусственно намагнитить и по-другому - при помощи постоянного электрического тока. Намотайте на стальную пластину провод с хорошей изоляцией, а затем на несколько секунд включите через реостат обмотку.

Теперь разница между намагниченным гвоздем и напильником станет очевидной. В первом случае сердечник обладает магнитными свойствами только во время прохождения тока (по виткам), во втором случае получается постоянный магнит. Напильник в отличие от гвоздя будет обладать остаточным магнетизмом.

Причина кроется в большой твердости материала напильника. В твердой стальной пластине атомы, из которых она состоит, ориентированы очень "прочно". Поэтому они лучше сохраняют и магнитные свойства.

Перерезав магнит пополам, мы получим два одинаковых магнита с различными полюсами. Повторив эту операцию, мы опять получим магниты с различными полюсами. Если бы мы разрезали магнит на микроскопические частицы, каждая из этих частиц все равно имела бы два полюса: северный (положительный) и южный (отрицательный).

Этот факт приводит к выводу, что полюса магнита не существуют раздельно, подобно тому как существуют отрицательные (электроны) и положительные (протоны) электрически заряженные частицы. Однако можно изготовить магнит с одинаковыми полюсами по концам. Следует только натирать стальную пластину одинаковыми полюсами, например северными, ведя их от середины к концам. Тогда атомы расположатся в структуре пластины так, что северные полюса направятся в одну сторону, а южные - в другую.

Магнитная стрелка располагается вдоль магнитных силовых линий. Конфигурацию линий магнитного поля легко запечатлеть с помощью железных опилок. Положив стекло с металлическими опилками на полосовой магнит, слегка постучите по стеклу. Каждая намагниченная частица железа будет представлять собой маленькую магнитную стрелочку. Протянувшись по силовым линиям поля, они и выявят его конфигурацию.

Во время встряхивании большая часть опилок переберется к полюсам. Экваториальная же часть поля поредеет. Но вот электрически заряженные частицы ведут себя совершенно по-другому.

Если бы отрицательно и положительно заряженные частицы можно было насыпать, как опилки, на стекло, то заряженные частицы оттолкнулись бы от полюсов и сосредоточились в экваториальной зоне магнитного поля - в виде кольца. Но как же все это увидеть?

Самодельные галактики

Пучки заряженных частиц, в частности электронов (бета-частиц), получают в бетатронах. В них электроны разгоняются почти до световых скоростей, а сами приборы весят тонны, а иногда и сотни тонн. И все же почти каждый из нас в состоянии провести опыт с электронным пучком при помощи обыкновенных телевизоров. Ведь в трубке телевизора именно электроны строчками ударяют по экрану кинескопа, вызывая свечение.

Возьмите постоянный магнит посильней, поднесите его полюс к экрану. Изображение на экране превратится в спираль, напоминающую галактику. Если изображение скрутится вправо, то это значит, что к экрану поднесен северный полюс магнита. Южный полюс магнита образует спираль, скрученную влево.

При приближении магнита к экрану против него появится темное кольцо (если магнит цилиндрический), а в самом центре останется светлая точка, через которую поток электронов продолжает идти к полюсу. Темное пятно показывает, что магнитные полюса отталкивают электроны, направляют их к экватору магнитного поля и по орбите вокруг магнита.

Электроны отталкиваются северным и южным полюсами. Поэтому они сосредоточиваются в экваториальной плоскости магнитного поля в виде довольно плоского кольца, наподобие колец планеты Сатурн.

С компасом через магнитные поля
Рис. 2

Взяв правой рукой магнит за конец северного полюса, поднесите его всей плоскостью горизонтально к экрану. Изображение на экране изогнется дугой - вверх над экватором магнитного поля. Переверните магнит южным полюсом вправо - изображение на экране прогнется вниз.

Из этих опытов видно, что электроны вращаются в магнитном поле по орбите против часовой стрелки, если смотреть на магнит с северного полюса. Если мы имеем дело с положительно заряженными частицами, то они, отталкиваясь от полюсов магнита, направились бы в сторону, противоположную направлению электронов по орбите.

А что будет, если магнит поставить на подшипники и облучить довольно мощным потоком электронов? Вероятно, магнит начнет вращаться: в потоке электронов - по часовой стрелке, в потоке протонов - против часовой стрелки. Направление вращения магнита будет противоположно направлению закручивания заряженных частиц.

А теперь вспомним, что Земля наша - огромный магнит, что из космоса на нее падает поток протонов. Теперь понятно, почему мы долго говорили о магнетизме, прежде чем перейти к обещанному объяснению вращения нашей планеты.

В одном хороводе

Английский ученый В. Гельберт считал, что Земля состоит из магнитного камня. Позднее решили, что Земля намагнитилась от Солнца. Расчеты опровергли эти гипотезы.

Пытались объяснить магнетизм Земли течениями масс в ее жидком металлическом ядре. Однако эта гипотеза сама опирается на гипотезу жидкого ядра Земли. Многие ученые считают, что ядро твердое и отнюдь не железное.

В 1891 году английский ученый Шустер, очевидно впервые, пытался объяснить магнетизм Земли ее вращением вокруг оси. Много труда этой гипотезе отдал известный физик П. Н. Лебедев. Он предполагал, что под влиянием центробежной силы электроны в атомах смещаются в сторону поверхности Земли. От этого поверхность должна быть отрицательно заряженной, это и вызывает магнетизм. Но опыты с вращением кольца до 35 тыс. оборотов в минуту гипотезу не подтвердили - магнетизм в кольце не появился.

В 1947 году П. Блекет (Англия) высказал предположение, что присутствие магнитного поля у вращающихся тел - неизвестный закон природы. Блекет попытался установить зависимость магнитного поля от скорости вращения тела.

В то время были известны данные о скорости вращения и магнитных полях трех небесных тел - Земли, Солнца и Белого Карлика - звезды Е78 из созвездия Девы.

Магнитное поле тела характеризуется его магнитным моментом, вращение тела - угловым моментом (при учете размеров и массы тела). Давно известно, что магнитные моменты Земли и Солнца относятся друг к другу таи же, как их угловые моменты. Звезда Е78 соблюдала эту пропорциональность! Отсюда стало очевидным, что существует прямая связь вращения небесных тел с их магнитным полем.

С компасом через магнитные поля
Рис. 3

Складывалось впечатление, что все же именно вращение тел вызывает магнитное поле. Блекет пытался экспериментально доказать существование предложенного им закона. Для опыта был изготовлен золотой цилиндр весом в 20 кг. Но тончайшие опыты с упомянутым цилиндром ничего не дали. Немагнитный золотой цилиндр не показал и признаков магнитного поля.

Теперь установлены магнитный и угловой моменты у Юпитера, а также предварительно у Венеры. И снова их магнитные поля, разделенные на угловые моменты, получаются близкими к числу Блекета. После такого совпадения коэффициентов трудно приписать дело случаю.

Так что же - вращение Земли возбуждает магнитное поле, или магнитное поле Земли вызывает ее вращение? Почему-то всегда ученые считали, что вращение присуще Земле с момента ее образования. Так ли это? А может быть, не так! Аналогия с нашим "телевизионным" опытом ставит вопрос: не потому ли Земля вращается вокруг своей оси, что она, как большой магнит, находится в потоке заряженных частиц? Поток состоит в основном из ядер водорода (протонов), гелия (альфа-частицы). Электронов в "солнечном ветре" не наблюдается, они, вероятно, образуются в магнитных ловушках в момент столкновений корпускул и рождаются каскадами в зонах магнитного поля Земли.

Земля - электромагит

Связь магнитных свойств Земли с ее ядром теперь вполне очевидна. Расчеты ученых показывают, что Луна не имеет текучего ядра, поэтому не должна иметь и магнитного поля. И действительно, измерения при помощи космических ракет показали, что Луна не имеет вокруг себя заметного магнитного поля.

Интересные данные получены в результате наблюдений земных токов в Арктике и Антарктиде. Интенсивность земных электротоков там очень велика. Она в десятки и сотни раз превышает интенсивность в средних широтах. Этот факт свидетельствует о том, что приток электронов из колец магнитных ловушек Земли усиленно поступает в Землю через полярные шапки в зонах магнитных полюсов, как в нашем опыте с телевизором.

В момент усиления солнечной активности усиливаются и земные электротоки. Теперь, вероятно, можно считать установленным, что электротоки в Земле вызываются течениями масс ядра Земли и притоков в Землю электронов из космоса, главным образом из ее радиационных колец.

Итак, электротоки вызывают магнитное поле Земли, а магнитное поле Земли, в свою очередь, очевидно, заставляет вращаться нашу Землю. Нетрудно догадаться, что скорость вращения Земли будет зависеть от соотношения отрицательно и положительно заряженных частиц, захваченных ее магнитным полем извне, а также рожденных в пределах магнитного поля Земли.

Автор: И.Кириллов

 Рекомендуем интересные статьи раздела Детская научная лаборатория:

▪ Какая форма Земли на самом деле?

▪ Измерение влажности

▪ Вызови тучу

Смотрите другие статьи раздела Детская научная лаборатория.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Оптимальная продолжительность сна 12.11.2025

Сон играет ключевую роль в поддержании здоровья, когнитивных функций и общего самочувствия. Несмотря на широко распространенный стереотип о восьмичасовом сне, последние исследования показывают, что оптимальная продолжительность сна для большинства здоровых взрослых ближе к семи часам. Эволюционный биолог из Гарварда, Дэниел Э. Либерман, утверждает, что традиционная норма восьми часов сна - это скорее культурное наследие индустриальной эпохи, чем биологическая необходимость. По его словам, полевые исследования, проведенные в сообществах, не использующих электричество, показывают, что средняя продолжительность сна составляет 6-7 часов, что значительно отличается от общепринятого стандарта. Современные эпидемиологические данные подтверждают этот взгляд. Исследования выявили так называемую "U-образную кривую" зависимости между продолжительностью сна и рисками для здоровья. Минимальные показатели заболеваемости и смертности наблюдаются именно у людей, спящих около семи часов в сутки. ...>>

Дефицит кислорода усиливает выброс закиси азота 12.11.2025

Парниковые газы играют ключевую роль в изменении климата, а закись азота (N2O) - один из наиболее опасных среди них. Этот газ не только втрое сильнее углекислого газа в удержании тепла, но и разрушает озоновый слой. Недавнее исследование американских ученых показало, что микробы в зонах с низким содержанием кислорода активно производят N2O, усиливая глобальные климатические риски. Команда из Университета Пенсильвании изучала прибрежные воды у Сан-Диего и провела наблюдения на глубинах от 40 до 120 метров в Восточной тропической северной части Тихого океана - одной из крупнейших зон дефицита кислорода. Исследователи сосредоточились на том, как морские микроорганизмы превращают нитраты в закись азота. В ходе работы выяснилось, что существует два пути образования N2O. Один путь начинается с нитрата, другой - с нитрита. На первый взгляд более короткий путь должен быть эффективнее, однако микробы, использующие нитрат, продуцируют больше газа, поскольку этот "сырьевой" источник более д ...>>

Омега-3 помогают молодым кораллам выживать 11.11.2025

Сохранение коралловых рифов становится все более актуальной задачей в условиях глобального изменения климата. Молодые кораллы особенно уязвимы на ранних стадиях развития, когда стрессовые условия и нехватка питательных веществ могут привести к высокой смертности. Недавнее исследование ученых из Технологического университета Сиднея показывает, что специальные пищевые добавки способны существенно повысить выживаемость личинок кораллов. В ходе работы исследователи разработали особый состав "детского питания" для коралловых личинок. В него вошли масла, богатые омега-3 жирными кислотами, а также важные стерины, необходимые для формирования клеточных мембран. Личинки, получавшие эти добавки, развивались быстрее, становились крепче и демонстрировали более высокую устойчивость к стрессовым факторам. Особое внимание ученые уделили липидам. Анализ показал, что личинки активно усваивают эти вещества, что напрямую влияет на их жизнеспособность. Стерины, содержащиеся в корме, повышают устойчи ...>>

Случайная новость из Архива

Электронный имплантат для контроля мозга 03.12.2013

В США одобрен к использованию в клинических условиях имплантат, способный управлять электрической активностью мозга. Пока планируется применять такие имплантаты для лечения нервных болезней, однако в будущем эти приборы могут использоваться более широко.

Электроды, помещенные в мозг, использовались в последние годы в качестве экспериментального лечения болезни Паркинсона, а также в т.н. нейроинтерфейсах, которые дают возможность парализованным людям управлять роботизированными манипуляторами. Комиссия по контролю за лекарствами и питательными веществами (FDA) одобрила новый имплантат, предназначенный, в первую очередь, для пациентов, страдающих эпилепсией. Это первое устройство такого типа, способное производить анализ деятельности мозга и оперативно корректировать ее направленными электрическими импульсами в случае обнаружения отклонений.

Как известно, эпилепсия вызывается хаотической электрической активностью мозга, приводящей к временной потере сознания и мышечным судорогам с продолжительностью приступа 1-2 минуты. Имплантат NeuroPace, способный автоматически управлять электрической активностью определенного участка мозга, на сегодняшний день имеет довольно большие габариты, поэтому его использование связано с риском инфицирования.

Нейростимулятор NeuroPace имплантируется непосредственно внутрь черепа и соединяется при помощи микроэлектродов с "проблемными" участками мозга, которые являются первопричиной эпилептических приступов. Нейростимулятор отслеживает электрическую активность в этих областях и автоматически посылает электрические импульсы, "гасящие" эпилептические нарушения в общей картине электрической активности мозга. При этом пациент электрических импульсов не замечает.

Стимулятор не лечит эпилепсию, но даже некоторое смягчение симптомов заметно повышает качество жизни при многих нервных заболеваниях. На сегодняшний день от эпилепсии страдают 65 млн чел. в мире. К сожалению, эта болезнь остается малоизученной, как правило, диагноз "эпилепсия" ставится людям, пережившим 2 или более эпилептических припадка за год. При этом первопричина заболевания обычно остается неизвестной. Бывает, что больным эпилепсией помогает диета или лекарственная терапия. Если же ничего не помогает, и при этом припадки бывают частыми и тяжелыми, проводится довольно рискованная операция по нейтрализации "проблемного" участка мозга. Иногда этот участок находится в такой области мозга, которая имеет важное значение для нормальной повседневной жизни. Именно в подобных случаях должен помочь нейроимплантат NeuroPace.

Другие интересные новости:

▪ Вакцина от коронавируса в виде пластыря

▪ Микроконтроллеры TI Hercules RM57Lx и TMS570LCx

▪ Куриный бульон против гипертонии

▪ Рак можно предотвратить

▪ Модули памяти Micron LPCAMM2

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Регуляторы тембра, громкости. Подборка статей

▪ статья Тот, кто живет в стеклянном доме, не должен бросаться камнями в других. Крылатое выражение

▪ статья Где была изобретена свеча? Подробный ответ

▪ статья Судно на бутылках. Личный транспорт

▪ статья Вихревые токи против грибка. Энциклопедия радиоэлектроники и электротехники

▪ статья Пассивные регуляторы тембра. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025