Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Атмосферная рефракция. Детская научная лаборатория

Детская научная лаборатория

Справочник / Детская научная лаборатория

Комментарии к статье Комментарии к статье

Атмосферной рефракцией называется отклонение световых лучей от прямой линии при прохождении ими атмосферы из-за изменения плотности воздуха с высотой. Атмосферная рефракция около земной поверхности создает миражи и может приводить к тому, что далекие объекты будут казаться мерцающими, дрожащими, находящимися выше или ниже своего истинного положения. Кроме того, форма объектов может быть искажена - они могут казаться сплюснутыми или растянутыми. Термин "рефракция" относится так же и к рефракции звука.

Атмосферная рефракция является причиной того, что астрономические объекты приподнимаются над горизонтом несколько выше, чем они есть на самом деле. Рефракция влияет не только на световые лучи но и на все электромагнитное излучение, хотя и в разной степени. Например, в видимом свете, синий цвет больше подвержен воздействию рефракции, чем красный. Это может приводить к тому, что астрономические объекты расплываются в спектр на изображениях с высоким разрешением.

По возможности астрономы планируют свои наблюдения при прохождении небесным светилом верхней точки кульминации, когда оно находится выше всего над горизонтом. Также при определении координат судна моряки никогда не будут использовать светило, высота которого менее 20° над горизонтом. Если наблюдения светила, находящегося близко к горизонту нельзя избежать, то можно оборудовать телескоп системами управления для компенсации смещения, вызванного преломлением света в атмосфере. Если дисперсия тоже является проблемой (в случае использования широкополосной камеры при наблюдениях с высоким разрешением), то может быть использовано корректирование преломления света в атмосфере (используя пару вращающихся стеклянных призм). Но так как степень атмосферной рефракции зависит от температуры и давления, а также влажности (количества водяного пара, что особенно важно при наблюдении в середине инфракрасной области спектра), то количество усилий, необходимых для успешной компенсации может быть непомерно высоким.

Атмосферная рефракция мешает наблюдениям сильнее всего тогда, когда она не является однородной, например, при наличии турбулентности в воздухе. Это является причиной мерцания звезд и деформации видимой формы солнце на закате и восходе.

Значения атмосферной рефракции

Атмосферная рефракция равна нулю в зените, меньше 1' (одна минута дуги) при видимой высоте 45° над горизонтом, и достигают величины 5,3' при 10° высоты; рефракция быстро увеличивается с уменьшением высоты, достигая 9,9' при 5° высоты, 18,4' при 2° высоты, и 35,4' на горизонте (1976 Аллен, 125); все значения получены при температуре 10°С и атмосферном давлении 101,3 кПа.

На горизонте величина атмосферной рефракции немного больше, чем видимый диаметр Солнца. Поэтому когда полный диск солнца виден чуть выше горизонта, то он виден лишь благодаря рефракции, так как если бы не было атмосферы, то ни одной части солнечного диска не было бы видно.

В соответствии с принятым соглашением время восхода и захода Солнца относят к времени, когда верхний край Солнца появляется или исчезает над горизонтом; стандартное значение для истинной высоты Солнца составляет -50'...-34' для рефракции и -16' для полудиаметра Солнца (высота небесного тела обычно дается для центра его диска). В случае с Луной дополнительные поправки необходимы для того, что бы учесть горизонтальный параллакс Луны и ее кажущийся полудиаметр, который меняется в зависимости от расстояния системы Земля-Луна.

Ежедневные изменения погоды влияют на точное время восхода и захода солнца и луны (см. статью "Рефракция у горизонта"), и по этой причине не имеет смысла приводить время видимого захода и восхода светил с точностью большей, чем минута дуги (подробнее это описано в книге "Астрономические алгоритмы", Джин Мееус, 1991 год, стр. 103). Более точные расчеты могут быть полезны для определения происходящих изо дня в день изменений времени восхода и захода светил при использовании стандартных величин рефракции, так как понятно, что реальные изменения могут отличаться из-за непредсказуемых изменений величины рефракции.

Из-за того что атмосферная рефракция составляет 34' на горизонте, и только 29 минут дуги на высоте 0,5° над горизонтом, то при заходе или восходе солнца кажется, что оно сплющено примерно на 5' (что составляет около 1/6 его видимого диаметра).

Расчет атмосферной рефракции

Строгий расчет преломления требует численного интегрирования, используя этот метод, описанный в статье Ауэра и Стендиша Астрономическая рефракция: расчет для всех зенитных углов, 2000. Беннетт (1982) в своей статье "Расчет астрономической рефракции для применения в морской навигации" вывел простую эмпирическую формулу для определения величины рефракции в зависимости от видимой высоты светил, используя алгоритм Гарфинкеля (1967) в качестве опорного, если ha - это видимая высота светила в градусах, то рефракция R в угловых минутах будет равна

точность формулы составляет до 0,07' для высот от 0° до -90° (Meeus 1991, 102). Смардсон (1986) вывел формулу для определения рефракции относительно истинной высоты светил; если h - это истинная высота светила в градусах, то рефракция R в угловых минутах составит

формула согласуется с формулой Беннетта с точностью до 0.1'. Обе формулы будут верными при атмосферном давлении равном 101,0 кПа и температуре 10° С; для различных значений давления Р и температуры Т результат расчета рефракции, произведенный по этим формулам следует умножить на

(по данным Мееуса, 1991, 103). Рефракция увеличивается примерно на 1% при увеличении давления на каждые 0,9 кПа и уменьшается примерно на 1% на каждые 0,9 кПа снижения давления. Точно так же рефракция увеличивается примерно на 1% при уменьшении температуры на каждые 3° С и рефракция уменьшается примерно на 1% при повышении температуры на каждые 3° С.


График зависимости величины рефракции от высоты (Беннет, 1982)

Случайные атмосферные эффекты, вызванные рефракцией

Турбулентность атмосферы увеличивает и уменьшает видимую яркость звезд, делая их ярче или слабее за миллисекунды. Медленные компоненты этих колебаний видны нам как мерцание.

Кроме того, турбулентность вызывает небольшие случайные перемещения видимого изображения звезды, а также производит быстрые изменения в его структуре. Эти эффекты не видны невооруженным глазом, но их легко увидеть даже в небольшой телескоп.

 Рекомендуем интересные статьи раздела Детская научная лаборатория:

▪ Ракетодром

▪ Немного солнца в ведре воды

▪ Вызови тучу

Смотрите другие статьи раздела Детская научная лаборатория.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Маргарин повышает риск старческого слабоумия 13.06.2025

Деменция, или старческое слабоумие, остается одной из самых серьезных и необратимых проблем современного здравоохранения. Несмотря на прогресс в медицине, эффективных методов лечения пока нет, поэтому особое внимание уделяется выявлению факторов риска и мерам профилактики. Среди них важную роль играют привычки питания, которые могут как снизить, так и повысить вероятность развития нейродегенеративных заболеваний. Одним из спорных продуктов, вызывающих все больше опасений, является маргарин - популярная замена сливочному маслу. Несмотря на свою распространенность, маргарин подвергается интенсивной химической обработке. По мнению Дэвида Винера, специалиста по фитнесу и здоровому образу жизни, работающего с приложением Freeletics на базе искусственного интеллекта, именно содержащийся в маргарине диацетил способен вызывать слипание белка бета-амилоида, который играет ключевую роль в патогенезе деменции и болезни Альцгеймера. Винер утверждает, что этот компонент не только способствует аг ...>>

Контактные линзы с инфракрасным зрением 13.06.2025

Инфракрасный свет представляет собой часть электромагнитного спектра с длиной волны более 700 нанометров - это волны, которые находятся за пределами видимого человеческому глазу диапазона. Благодаря своим свойствам инфракрасный свет широко используется в различных технологиях, от ночного видения до тепловизоров. Однако человеческий глаз не имеет способности воспринимать эти длинноволновые излучения, поэтому для наблюдения инфракрасного света до сих пор требовались громоздкие приборы, такие как ночные очки или камеры с инфракрасными детекторами. Это ограничивало их применение в повседневной жизни и профессиональной деятельности. Недавно команда ученых из Университета науки и технологий Китая под руководством нейроученого Тяня Сюэ разработала инновационные контактные линзы с наночастицами, способными преобразовывать инфракрасный свет в видимый. Этот процесс называется "восходящим преобразованием" (upconversion) - наноматериалы внутри линз меняют длинные инфракрасные волны на короткие ...>>

Ультратонкие водородные мембраны 12.06.2025

Водородные технологии приобретают все большее значение в глобальном переходе к экологически чистой энергетике. Одним из ключевых элементов таких систем являются мембраны, через которые происходит транспорт ионов в топливных элементах. Недавние разработки норвежской исследовательской лаборатории SINTEF открывают новые горизонты в этой области, предлагая ультратонкие мембраны, которые не только повышают эффективность, но и уменьшают затраты и вредное воздействие на окружающую среду. Новая мембрана, представленная специалистами SINTEF, имеет толщину всего 10 микрометров, что составляет примерно две трети от стандартной толщины в 15 микрометров. В пресс-релизе лаборатории описывается, что такой тонкий материал кажется сопоставимым с легчайшим листом бумаги формата А4, который при этом прочнее и тоньше многих аналогов. Этот значительный шаг вперед позволит существенно сократить себестоимость производства топливных элементов - примерно на 20%. При этом снижение толщины мембраны никак н ...>>

Случайная новость из Архива

Новая технология увеличила яркость LED в семь раз 29.09.2006

Исследователи из Национального института стандартов и технологий (NIST) заявили о создании светодиода нового типа - резонаторного LED (resonant cavity LED, RCLED), который в семь раз ярче традиционных LED, сообщает Nanotechweb.

Этого удалось достичь благодаря дополнительному вытравливанию круговых решеток Брэгга размерами 130 нанометров на поверхности устройства. По мнению исследователей, новая технология может применяться в оптокогерентной томографии и других средствах медицинской визуализации.

Теперь ученые планируют перенести опыт усиления светового излучения в наноструктурах на различные нанофотонные устройства - в первую очередь на оптофотонные транзисторы.

Другие интересные новости:

▪ Кораллы не загорают

▪ Cadillac CTS с функцией беспилотника

▪ Елочные фермы позитивно воздействуют на природу

▪ Электрокроссовер Volvo XC40 Recharge

▪ Новые мощные МОП-транзисторы NXP

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Бытовая электроника. Подборка статей

▪ статья Благую часть избрать. Крылатое выражение

▪ статья Какими были первые автомобили? Подробный ответ

▪ статья Работа на камнедробильной установке. Типовая инструкция по охране труда

▪ статья Оптические (фотоэлектрические) датчики. Энциклопедия радиоэлектроники и электротехники

▪ статья Серванты фокусника. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025