Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


За кормой, в пенной струе. Детская научная лаборатория

Детская научная лаборатория

Справочник / Детская научная лаборатория

Комментарии к статье Комментарии к статье

Юркий гоночный скутер и полукилометровой длины танкер, атомная подводная лодка и речной буксир - эти непохожие друг на друга суда и еще десятки других движутся в воде и под водой с помощью гребного винта. Девять современных самоходных судов из десяти - винтовые.

За кормой, в пенной струе

Гидробиологи изучили сотни обитателей рек, озер и океанов - от креветки до кальмара, от тюльки до кита, тщательно исследовали способы их передвижения в воде. Ни одного из них природа не наделила чем-либо напоминающим гребной винт. Как и колесо, главный движитель современного флота не имеет аналогов в природе. Корабельный винт -потомок созданного гениальным Архимедом винта для подъема воды. Если вспомнить еще и закон Архимеда, окажется, что судоходство сегодня дважды обязано великому сиракузцу...

В 1793 году французский математик Понтон предложил использовать для движения судов гребной винт. Спустя три десятилетия чешский изобретатель И. Рессель создал первую конструкцию винта - шнек. А в 1836 году случайная авария привела к тому, что шнек уступил место винту сегодняшней формы - лопастному. Во время испытаний длинный, как у мясорубки, шнек обломился, и судно пошло быстрее.

В 1849 году преимущества гребного винта были доказаны в честной борьбе. Английские пароходы - винтовой "Нигер" и колесный "Базилиск", оба с машинами по 400 л.с., связанные тросами, направились в противоположные стороны. Это было нечто вроде состязания по перетягиванию каната. Больше часа винтовой корабль тянул своего соперника со скоростью 1,5 узла.

Правда, после этого состязания колесные пароходы строили еще не одно десятилетие. Но скорее всего, по инерции...

Лидер мирового танкерного флота "Глобтик Токио" имеет на борту двигатели общей мощностью 45 000 л. с., мощность двигателей ледокола "Ермак" - 42 0 л. с., пассажирского лайнера "Куин Элиэабет-2" - 11 000 л. с. Но получить энергию-это еще не все: ее надо использовать.

Судно движется, отбрасывая потоки воды, иными словами, все самоходные суда - гидрометы. Колеса отбрасывают воду, нажимая на нее лопастью - плицей. У винта этот процесс сложнее. Каждая его лопасть служит своеобразным крылом. При вращении лопасти в толще воды на одной поверхности крыла образуется зона разрежения, а на другой - сжатия. Перепад давлений и создает подъемную сипу попасти, а сумма подъемных сил лопастей - упор винта. В отличие от обыкновенного шурупа, головка которого перемещается при каждом обороте на шаг винтовой пинии, гребной винт как бы снимает нарезку, отбрасывая назад массу воды. Чем больше эта масса, тем сильнее упор и тем лучше винт.

Казалось бы, для увеличения упора достаточно увеличить обороты. Но при этом происходит уже не смятие, а разрыв невидимой водяной нарезки. Давление на передней кромке лопасти падает еще больше, и вода вскипает, образуя многочисленные пузырьки. Как только пузырек вылетает из зоны пониженного давления, он схлопывается: его сжимает толща воды. Гибель каждого пузырька сопровождается микровзрывом.

Взрывные удары пузырьков о лопасть винта вызывают не только шум и вибрацию. С металла срывается защитная окисная пленка, начинается кавитационная эрозия. Лопасть винта, подверженного кавитации, напоминает изрешеченную пулями мишень.

Кавитация возникает при определенных оборотах винта. Чтобы избавиться от этого крайне неприятного явления, нужно обороты уменьшить. Но тогда упадет упор винта, его тяга.

Борьба с навигационной эрозией металла привела к парадоксальному техническому решению: кавитацию решили усилить. Были созданы винты с лопастями специального профиля. При сверхвысоких оборотах навигационные пузырьки стали покрывать всю рабочую поверхность лопасти, образуя огромный паровой пузырь. Повышение оборотов такого винта почти не изменяет давления в паровом пузыре, а давление сзади лопасти и общий упор возрастают. Такие винты получили название суперкавитирующих. Для обычных судов они малоэффективны, ко незаменимы, когда нужно достичь скоростей, превышающих 40 узлов. Например, советский газотурбоход на подводных крыльях "Тайфун" снабжен суперкавитирующим винтом.

Лопасти кружатся в непрерывном хороводе. Достаточно одной из них "сбиться с такта", чтобы начал вибрировать весь винт, а за ним и вся корма. Случалось, что из-за вибрации винта приходилось перестраивать судно. Вот почему винты с особой тщательностью балансируют, форму лопастей и их наклон выверяют специальными шаблонами, поверхность шлифуют до зеркального блеска не реже одного раза в год. Если при осмотре проработавшего какое-то время винта на его поверхности обнаруживают выбоины глубже одного миллиметра, их зашпаклевывают эпоксидными компаундами и вновь шлифуют до зеркального блеска.

Особая проблема - выбор металла для винта. Из-за сильной коррозии в морской воде обычные стали практически неприемлемы. Достаточно сказать, что на ледоколе "Мурманск" за два года эксплуатации каждая винтовая лопасть потеряла в весе 200 килограммов. Это - попасти из специальных легированных сталей!

В последние годы все чаще корабельные винты делают из латуни или бронзы. Коррозионная стойкость латуни в сто раз больше, чем у обычной стали. Но в морской воде и латунь подвержена коррозии - из нее вымывается цинк. Участки с пониженным содержанием цинка покрываются трещинами, прочность лопастей падает. Небольшая трещина при каждом повороте винта то открывается, то закрывается, продукты коррозии шлифуют ее края, расширяют ее. И вот наступает момент, когда металл не выдерживает и разламывается...

Латунь - металл не очень прочный. Для высокооборотных винтов чаще используют марганцовистую алюминиевую или никель-алюминиевую бронзу, прочность которой близка к прочности легированных сталей, а стойкость в морской воде в несколько раз выше, чем у латуни. Из таких бронз отливают винты весом больше 50 тонн для современных контейнеровозов и супертанкеров.

Однако такие сплавы не выдерживают столкновения даже с легкими льдами. Поэтому для ледоколов приходится изготовлять винты из легированной нержавеющей стали, в которую входят и медь, и марганец, и никель, и титан и еще ряд добавок.

Рассказ о современных материалах для корабельных винтов будет неполным, если не упомянуть о пластмассах. На судах уже устанавливают литые нейлоновые винты. Но только на судах небольших. Даже окантованные стальными листами нейлоновые лопасти не выдерживают гигантских механических нагрузок, которые несут винты крупных кораблей. Но ведь гребной винт существует полтораста лет, а первые опыты с пластмассовыми лопастями начались всего лишь лет десять назад...

Авторы: М.Короткий, М.Найдинг

 Рекомендуем интересные статьи раздела Детская научная лаборатория:

▪ Мускулы из воздуха

▪ Простейший барометр

▪ Гравитационные часы

Смотрите другие статьи раздела Детская научная лаборатория.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Токсичность интернета преувеличена 07.01.2026

Социальные сети нередко воспринимаются как арена постоянной агрессии, оскорблений и распространения фейковой информации. Новое исследование Стэнфордского университета показывает, что реальность значительно отличается от популярного представления: интернет гораздо менее токсичен, чем многие пользователи считают. Ученые опросили более тысячи американцев, попросив их оценить долю пользователей соцсетей, которые ведут себя агрессивно или распространяют ненависть. Оказалось, что впечатления людей сильно преувеличивают масштабы проблемы. Например, респонденты считали, что почти половина пользователей Reddit хотя бы раз оставляла оскорбительные комментарии, тогда как фактические данные платформы показывают, что таких людей не более 3%. Аналогичная ситуация наблюдается с дезинформацией. Опрос показал, что большинство участников считали почти половину аудитории Facebook распространителями фейковых новостей, однако статистика говорит об обратном: фактическая доля таких пользователей состав ...>>

Процессоры Ryzen AI 400 07.01.2026

Современные вычисления все больше ориентируются на интеграцию искусственного интеллекта и высокую производительность в компактных устройствах, таких как ноутбуки и мини-ПК. Новая линейка процессоров AMD Ryzen AI 400 демонстрирует, как разработчики объединяют мощные центральные ядра, графику и нейросетевые ускорители в одном чипе, чтобы удовлетворять растущие потребности пользователей в играх, контенте и ИИ-приложениях. AMD представила процессоры серии Gorgon Point, которые включают до 12 ядер Zen 5 и до 24 потоков вычислений. Чипы поддерживают интегрированную графику RDNA 3.5, обеспечивают максимальную тактовую частоту до 5,2 ГГц и имеют энергопотребление от 15 Вт до 54 Вт. Особое внимание уделено NPU, способному обрабатывать до 60 триллионов операций в секунду (TOPS), что делает эти процессоры эффективными для задач с искусственным интеллектом. Конструкция Ryzen AI 400 сочетает ядра Zen 5 и Zen 5c, обеспечивая высокую гибкость и производительность. Несмотря на то, что архитектур ...>>

Женщины лучше распознают признаки болезни по лицу 06.01.2026

Способность распознавать, что кто-то нездоров, часто проявляется интуитивно: бледная кожа, опущенные веки, уставшее выражение лица могут сигнализировать о недомогании. Новое исследование международной группы ученых показало, что женщины в среднем точнее мужчин улавливают такие тонкие невербальные признаки болезни, что может иметь эволюционные и социальные объяснения. В отличие от предыдущих работ, где использовались отредактированные фотографии или имитация больных лиц, ученые решили проверить, насколько люди способны распознавать естественные признаки недомогания. Такой подход позволил оценить реальную чувствительность к изменениям в лицах, возникающим при болезни. В исследовании приняли участие 280 студентов, поровну мужчин и женщин. Участникам предложили оценить 24 фотографии, на которых изображены люди как в здоровом состоянии, так и во время болезни. Это дало возможность сравнить восприятие естественных признаков недомогания в реальных лицах. Для анализа состояния каждого ...>>

Случайная новость из Архива

Разработка энергонезависимой памяти CeRAM 06.02.2014

Инновационная технология энергонезависимой памяти, которая может лучше масштабироваться и показывать более высокую производительность, чем флеш-память и традиционная резистивная память (ReRAM), заинтересовала крупного разработчика процессорных архитектур ARM Holdings. Память CeRAM (Correlated electron RAM, память с коррелированным электроном) активно продвигает компания Symetrix. ARM, в свою очередь, поддерживает её исследования.

В проект, занимающийся исследованием CeRAM-памяти, вовлечены компании Symetrix, ARM, Университет Колорадо и Техасский университет. Конкретные цели, длительность и бюджет проекта не озвучены, но участник исследования, профессор Арауджо (Araujo), отметил, что вскоре Symetrix получит важные данные о CeRAM-приборах с помощью атомно-силового микроскопа, который позволяет разглядывать детали размером порядка 5 нм. Эти данные должны будут продемонстрировать "новые переключающие" свойства устройства.

Интенсивные исследования таких технологий как ReRAM и CeRAM объясняются тем фактом, что флеш-память подходит к своему технологическому барьеру и разрабатывать устройства по техпроцессам менее 10-20 нм будет весьма проблематично. Поэтому отрасли нужны принципиально новые разработки. Что касается ReRAM, то в развитии этой технологии исследователей подстерегают множество барьеров. Понимание физических процессов формирования и разрушения так называемых проводящих нитей в изолирующем слое между верхними и нижними электродами в ReRAM-памяти оказалось затруднительным, а без этого продвигаться дальше сложно.

В отличие от ReRAM, CeRAM является резистивной памятью, в которой используются те же окиси переходных металлов (TMO), такие как NiO, но при этом не используются нити и гальванопластика. Вместо этого в CeRAM-памяти наблюдаются квантовые эффекты корреляции позиций электронов, откуда она и получила своё название. В структуре CeRAM выделяется активная область TMO, которая разделяет два проводящих слоя TMO, тогда как в ReRAM окись переходного металла занимает полностью всю область между слоями металла.

TMO имеют неполные атомные оболочки 3d или 4d, которые проходят через переход металл-изолятор. В случае с NiO достаточно напряжения 0,6 В для записи изолированного состояния и 1,2 В для записи проводящего состояния. При этом не требуются никакие термодинамические фазовые переходы, как в традиционной ReRAM.

Скорость переключения ячеек CeRAM-памяти может достигать десятки фемтосекунд, а напряжение питания при чтении составляет всего около 0,1-0,2 В. Состояние памяти остаётся стабильным даже при нагреве вплоть до 400 градусов Цельсия.

Другие интересные новости:

▪ Подсчитан суммарный объем света, выделенный Вселенной

▪ Бесплатный Wi-Fi стал важнее секса и алкоголя

▪ Стиральная машина для собак

▪ Журнал Newsweek прекращает выходить в печатном виде

▪ Спасение коралловых рифов пересадкой доноров

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Охрана труда. Подборка статей

▪ статья Поле битвы после победы принадлежит мародерам. Крылатое выражение

▪ статья Где более 20 лет ходил автобус № 0? Подробный ответ

▪ статья Бетель. Легенды, выращивание, способы применения

▪ статья Установка акустических систем на шипы. Энциклопедия радиоэлектроники и электротехники

▪ статья Симметричный преобразователь уровня - стабилизатор напряжения. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2026