Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Чем горячее - тем прохладнее. Детская научная лаборатория

Детская научная лаборатория

Справочник / Детская научная лаборатория

Комментарии к статье Комментарии к статье

Всем известно: для работы настольного вентилятора нужна электрическая сеть или хотя бы батарейка. Но не всегда.

Вентилятор сделан студентами технической школы японского инженера Койши Хирата.

Чем горячее - тем прохладнее
Этот стирлинг работает от тепла руки

Чем горячее - тем прохладнее
Вентилятор, работающий от свечи

Чем горячее - тем прохладнее
...а этому для работы достаточно чашки кофе

Устройство очень изящно с технической точки зрения и при этом отнюдь не бесполезно. Его можно взять в поход и поставить в палатке, использовать в доме на садовом участке, где нет электричества. Если еще учесть, что треть человечества сегодня живет при керосиновых лампах, то вентилятор, работающий от свечи, должен иметь громадный рынок сбыта.

Двигатель вентилятора состоит из двух цилиндров. Один из них, назовем его главным, представляет собою плоскую цилиндрическую коробку. Ее дно подогревается свечой, а верхняя крышка отдает тепло окружающему воздуху. Крышка, и дно сделаны из металлов, хорошо проводящих тепло, например, из меди или латуни.

Соединяющая их цилиндрическая стенка сделана, например, из материалов, плохо проводящих тепло, -стекла или пластика.

На крышке смонтирован силовой цилиндр, поршень которого при помощи шатуна соединен с одним из кривошипов коленчатого вала.

Внутри коробки ходит вытеснитель из пенопласта. Его шток соединен со вторым кривошипом коленчатого вала. Оба эти кривошипа расположены под углом 90° друг к другу.

Чем горячее - тем прохладнее
Устройство вентилятора: 1 - пропеллер; 2 - коленчатый вал; 3 - шатун вытеснителя; 4 - муфта; 5 - шатун; 6 - силовой цилиндр; 7 - втулка; 8 - вытеснитель

Вот как двигатель работает. Представим, что в первый момент поршень силового цилиндра находится в нижней мертвой точке (1). При этом вытеснитель, соединенный при помощи шатуна с другим кривошипом, окажется в среднем положении.

Воздух под ним будет нагреваться и расширяться. Это заставит поршень силового цилиндра подниматься вверх, совершая работу (2). Вытеснитель при этом начнет двигаться к крайнему верхнему положению, и процесс нагревания пойдет еще быстрее.

Вскоре силовой поршень достигнет своей верхней мертвой точки (3). Вытеснитель при этом опять окажется в среднем положении. (Отметим, что на его движение почти не затрачивается работа, ведь воздух, благодаря зазору, свободно обтекает его кромки.)

Когда вытеснитель окажется внизу (4), начнется охлаждение воздуха через верхнюю крышку цилиндра. Давление уменьшится, и поршень начнет движение к нижней мертвой точке. И так без конца. Самая сложная часть двигателя - главный цилиндр из двух пластин, стянутых болтами с гайками, между которыми зажато пластиковое кольцо диаметром 120 мм. Его можно отрезать от бутылки из-под минеральной воды. Края кольца должны быть идеально ровными и параллельными друг другу, иначе вы не добьетесь герметичности цилиндра. (Для того чтобы аккуратно отрезать кольцо, лучше сделать простейшее приспособление для резки, показанное на рисунке.)

Чем горячее - тем прохладнее
Принцип работы двигателя Стирлинга

Нижняя и верхняя пластины - крышки главного цилиндра - лучше сделать из латуни или алюминия толшиною 1 - 2 мм. Применять сталь, особенно нержавеющую, из-за ее низкой теплопроводности не стоит.

Каждая крышка имеет шесть отверстий диаметром 3 мм для болтов, а верхняя - еще два дополнительных. Одно - для втулки, через которую должен проходить шток вытеснителя, другое - для установки силового цилиндра.

В качестве втулки штока цилиндра можно применить отрезок карандаша, из которого удален графитовый стержень. В качестве штока вытеснителя возьмите короткую вязальную спицу.

Если ее диаметр окажется больше диаметра отверстия, сделайте из нее так называемое "пушечное сверло". Поставьте его в дрель и на малых оборотах рассверлите отверстие втулки. При аккуратном выполнении этой работы вы получите отверстие, в котором шток будет двигаться легко, но почти без зазора. В качестве смазки можно применить графит от карандаша.

Чем горячее - тем прохладнее
Отрезание кольца от пластиковой бутылки

Чем горячее - тем прохладнее
Пушечное сверло и его работа

Чем горячее - тем прохладнее
Изготовление поршня без помощи токарного станка: 1 - силовой цилиндр; 2 - жестяная вставка

Чем горячее - тем прохладнее
Схема простейшего станка для резки пенопласта: 1 - трансформатор 12/220В с изолированной вторичной обмоткой; 2 - нихромовая проволока

Силовой цилиндр сделайте из куска латунной гильзы от патрона для охотничьего ружья. Коли крышка латунная, то гильзу можно к ней припаять. Если алюминиевая - припаяйте к гильзе жестяной фланец и прикрутите к крышке винтами-саморезами.

Поршень лучше выточить на токарном станке, но, если станка нет, можно спаять его из жести. Для этого отрежьте полоску жести и несколько раз протяните ее вокруг гладкого стержня. В результате она приобретет упругость и способность сворачиваться в спираль. Вставьте два куска такой спирали в гильзу и, постепенно выдвигая, пропаяйте в ней шов. К получившемуся цилиндрику припаяйте крышку, опилите, просверлите отверстие, и у вас получится поршень.

Вытеснитель вырежьте из пенопласта при помощи раскаленной нихромовой проволоки. (Нихром можно взять от старого паяльника.) Схема приспособления для изготовления вытеснителя показана на рисунке.

Поршень и шток вытеснителя, как уже сказано, соединяются с кривошипом при помощи шатунов.

Коленчатый вал выгибается из стальной проволоки. Он установлен на жестяных стойках. На одном его конце закрепите подходящий пропеллер. Чтобы избежать продольного сдвига вала, наденьте на него муфты с винтами от детского конструктора.

Автор: Л.Ильин

 Рекомендуем интересные статьи раздела Детская научная лаборатория:

▪ Вечный двигатель на вечной мерзлоте

▪ На пороге далеких миров

▪ Сделай батарейку

Смотрите другие статьи раздела Детская научная лаборатория.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Кислотность океана разрушает зубы акул 03.10.2025

Мировые океаны выполняют важнейшую функцию - они поглощают около трети углекислого газа, выбрасываемого в атмосферу. Это помогает замедлять темпы глобального потепления, но имеет и обратную сторону. Растворяясь в воде, CO2 образует угольную кислоту, которая повышает концентрацию водородных ионов и приводит к снижению pH. Вода становится более кислой, а последствия этого процесса уже заметны для морских экосистем. Средний показатель кислотности океана сейчас равен примерно 8,1, тогда как еще недавно за условную норму брали значение 8,2. По прогнозам, к 2300 году уровень может упасть до 7,3 - это сделает океан почти в десять раз кислее нынешнего состояния. Для обитателей морей подобные изменения означают не просто сдвиг химического равновесия, а реальную угрозу физиологическим процессам, начиная от формирования раковин у моллюсков и заканчивая охотничьим поведением акул. Чтобы выяснить, как именно кислотная среда отражается на зубах акул, группа немецких исследователей провела эксп ...>>

Почтовый космический корабль Arc 03.10.2025

Космические технологии становятся частью инфраструктуры, способной повлиять на логистику, медицину и даже военную сферу. Идея использовать орбиту как глобальный склад для срочных поставок звучала еще недавно как научная фантастика, но стартап Inversion пытается превратить ее в практическое решение. Компания Inversion появилась в начале 2021 года благодаря Джастину Фиаскетти и Остину Бриггсу, которые на тот момент были студентами Бостонского университета. Их замысел состоял в том, чтобы сделать возможной доставку грузов не только через спутниковые сети данных, но и в буквальном смысле - физических предметов. В основе лежит простая мысль: если космос обеспечивает доступ к любой точке Земли, то и грузы должны перемещаться тем же маршрутом. Уже за три года работы команда из 25 специалистов успела построить демонстрационный аппарат "Ray". Его запуск состоялся в рамках миссии SpaceX Transporter-12. Устройство весом 90 килограммов проверяло ключевые технологии Inversion, включая двухком ...>>

Лазерное обогащение урана 02.10.2025

Ядерная энергия остается одним из ключевых источников стабильного электричества, особенно для стран с растущими потребностями в энергоснабжении. Однако обеспечение бесперебойных поставок топлива для атомных станций требует современных технологий обогащения урана, которые одновременно эффективны и безопасны. Американская компания Global Laser Enrichment (GLE) делает значительный шаг в этом направлении, завершив масштабное тестирование лазерной технологии обогащения урана. Демонстрационная программа была проведена на объекте в Уилмингтоне, Северная Каролина. Тестирование технологии SILEX (Separation of Isotopes by Laser EXcitation), разработанной австралийской Silex Systems, стартовало в мае 2025 года и продлится до конца года. В ходе экспериментов компания планирует получить сотни фунтов низкообогащенного урана (LEU), который может быть использован в качестве топлива для атомных электростанций. GLE была создана в 2007 году для коммерциализации лазерных методов обогащения урана в С ...>>

Случайная новость из Архива

Гибкие и эластичные источники питания 10.10.2014

Специалисты Массачусетского технологического института (MIT) обнаружили, что графен можно использовать для создания гибких и эластичных источников питания, которые будут востребованы в носимой электронике.

Ученые скрепили кусочки графена в лист и смяли его, подобно тому, как сминают лист бумаги. "Мятая графеновая бумага" оказалась подходящим кандидатом для использования в ионисторах, поскольку она имеет большую площадь поверхности относительно занимаемого объема.

Важно, что "бумага" не повреждается и не утрачивает свои качества даже при значительной деформации. Например, ее можно растянуть до 800% от первоначального размера или смять и расправить снова 1000 раз.

Разработчики подтвердили работоспособность своих идей на практике, изготовив прототип ионистора, в котором электроды из графена были разделены слоем диэлектрика, роль которого выполнил гидрогель с подходящими свойствами.
По словам исследователей, новые источники питания могут быть недорогими и простыми в производстве. Помимо ионисторов, описанный подход годится и для других гибких электронных компонентов, например, датчиков.

Другие интересные новости:

▪ За просмотр пиратского DVD-фильма в Германии можно сесть в тюрьму

▪ Чем больше пыли, тем теплее

▪ Антенна-фонтан

▪ Очистка воды от урана с помощью магнитных бактерий

▪ Спутники для регистрации гравитационных волн

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Регуляторы тока, напряжения, мощности. Подборка статей

▪ статья Все ушли на фронт. Крылатое выражение

▪ статья Как порносайты развивали интернет-индустрию в целом? Подробный ответ

▪ статья Работы с воздействием на призабойную зону скважин. Типовая инструкция по охране труда

▪ статья Монтаж электросчетчиков и электропроводки к ним. Энциклопедия радиоэлектроники и электротехники

▪ статья Усилитель мощности KB радиостанции. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025