Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Модель катамарана. Советы моделисту

Моделирование

Справочник / Аппаратура радиоуправления

Комментарии к статье Комментарии к статье

В руках у Романа Ивановича Романова, эстрадного артиста, была модель катамарана. Две игрушечные лодочки соединял дюралюминиевый лист. На нем я заметил нехитрое механическое устройство: электрический моторчик, редуктор, на выходном валу которого был посажен небольшой маховик, шатун, кулиса и приводной вал. На конце приводного вала, за кормой катамарана, был размещен какой-то странный движитель - два пластмассовых стаканчика.

- И что, - спросил я Романа Ивановича, - вот эти стаканчики способны, подобно гребному винту, толкать модель вперед?

- Не верите? Пошли испытаем в ванне.

Однажды Роман Иванович зачерпнул воду ведром, чуть-чуть приподнял его. Но что это? Какая-то сила толкнула руки в противоположную от донышка сторону. Проверил еще раз. Результат тот же. Вытекающая из ведра вода создавала тягу, очень схожую с реактивной. Он решил, что этот эффект можно использовать для привода моделей в движение.

Он взял свой катамаран. Поставил его на воду. Включил тумблер. Заработал электрический моторчик, пришла в движение передача, а стаканчики стали качаться с небольшим размахом вверх-вниз. Попеременно, каждый из них полностью погружается в воду, а затем целиком выходит из воды. Модель поплыла, набирая скорость.

- Не сразу я додумался до этой модели. Долго ломал голову, как же перейти от эффекта с ведром на реальную модель. Вначале у меня был не катамаран, а лодка. На ее корме установил колесо из пенопласта, в диаметрально противоположных точках которого закрепил стаканчики. Лодка плыла, но медленно - слишком большое сопротивление оказывало колесо. Да и плыла она не прямолинейно, а зигзагами.

Были еще три промежуточные модели, которые имели те или иные недостатки. И вот этот катамаран. Мне кажется, что здесь удалось преодолеть многие технические противоречия. Качающиеся пластмассовые стаканчики меньше тормозят модель. Работают настолько эффективно, что создают больший упор, чем гребной винт, питающийся энергией от той же батарейки. Из этого можно сделать вывод, что коэффициент полезного действия движителя выше. Но это только у моделей. Для реальных морских или речных судов утверждать это не берусь. Вероятнее всего, этот эффект лучше проявит себя на малых скоростях.

Модель катамарана
Электрический двигатель приводит в движение механическую передачу, которая преобразует вращение в качение. Рабочие органы движителя - два стаканчика. Они качаются с небольшим размахом вверх-вниз. Это значит, что каждый из них попеременно полностью погружается в воду, а затем целиком из нее выходит.

Прощаясь, Роман Иванович обратился к вам, ребята, подумать и поискать ответы, объясняющие эффект, а также поэкспериментировать с необычным движителем. Размеры модели любой моделист может выбрать по своему желанию. Но советуем подойти к этой работе творчески, поразмыслить над своей конструкцией, ведь движитель можно установить на модели многими способами.

И последнее: хотелось бы получить от вас экспериментальное подтверждение определения коэффициента полезного действия движителя в сравнении с гребным винтом или водометным движителем.

"А зачем преобразовывать вращение в качение и терять на этом часть мощности двигателя?" - подумал изобретатель Александр Григорьевич Пресняков.

Модель катамарана
На рисунке цифрами обозначены: 1 - электродвигатель; 2 - редуктор; 3 - тумблер; 4 - батарейка; 5 - стаканчик; 6 - венчик; 7 - ступица; 8 - спица; 9 - отверстие

Начались эксперименты. Вначале он построил лодку. На ее корме установил колесо, по диаметру которого в противоположных точках установил стаканчики. Колесо вращалось не по движению модели, а поперек. Модель плыла, но медленно, зигзагами.

Потом были еще четыре модели, и у каждой свои недостатки. И вот последняя модель, та самая, что Пресняков принес в редакцию. Посмотрите ее на рисунке. Вращающиеся стаканчики медленно входят один за другим в воду. Плоскими днищами они не. тормозят, а, наоборот, подталкивают модель вперед. Самый же мощный импульс движитель сообщает модели тогда, когда стаканчики выходят из воды. В этот момент они заполнены водой до краев, она выливается и создает реактивную тягу. А чтобы тяга была постоянной, в днищах стаканчиков проделаны отверстия и в горловины вставлены венчики, направляющие лопатки.

Размеры модели, если кто хочет повторить идею Преснякова, можно выбрать самостоятельно, заранее подобрав механический привод от старой и уже ненужной игрушки. Но изобретатель советует подойти к работе творчески, ведь движитель необязательно устанавливать так, как это сделал он.

Автор: В.Ротов

 Рекомендуем интересные статьи раздела Моделирование:

▪ Модели - копии ракет

▪ Скоростная судомодель класса F3V

▪ Универсальный стенд для микродвигателей

Смотрите другие статьи раздела Моделирование.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Открыт обращаемый драйвер старения 04.10.2025

Недавняя работа ученых из Сямэньского университета в Китае показала, что в гипоталамусе, главном регуляторе внутренних функций организма, кроется один из ключей к продлению молодости. Команда под руководством Лиге Ленга обнаружила, что снижение уровня белка менина в гипоталамусе связано с ускорением процессов старения. Менин, как выяснилось, играет важную роль в предотвращении воспаления и поддержании нормальной работы нейронов. Когда его уровень снижается, в мозге возрастает активность воспалительных сигналов, что запускает цепную реакцию возрастных изменений во всем организме - от ослабления когнитивных функций до потери плотности костей и истончения кожи. Чтобы понять, как именно менин влияет на старение, ученые вывели генномодифицированных мышей, у которых этот белок можно было выборочно отключить. Даже у молодых животных такое вмешательство быстро привело к ухудшению памяти, снижению прочности костей и эластичности кожи, а также к укорочению жизни. Эти результаты убедительно ...>>

Твердотельные батареи Panasonic 04.10.2025

Твердотельные аккумуляторы считаются следующим шагом в эволюции энергосистем: в отличие от традиционных литиево-ионных, они не содержат жидкого электролита, что существенно снижает риск возгорания и утечки. Именно на это делает ставку Panasonic, намереваясь завершить подготовку первых образцов к марту 2027 года, то есть к концу 2027 финансового года. Как сообщил технический директор подразделения Panasonic Energy Сеичиро Ватанабе, после выпуска опытных моделей клиенты проведут тесты, которые могут занять около двух лет, прежде чем начнется полноценное серийное производство. Хотя основным направлением для компании по-прежнему остаются литиево-ионные аккумуляторы, Panasonic стремится использовать свой опыт в сфере электромобильных технологий, чтобы выйти на новые рынки - прежде всего в области роботов и промышленных систем. На этом направлении японская корпорация намерена соперничать с такими компаниями, как TDK, уже закрепившимися в сегменте твердотельных решений. Интерес к новой ...>>

Кислотность океана разрушает зубы акул 03.10.2025

Мировые океаны выполняют важнейшую функцию - они поглощают около трети углекислого газа, выбрасываемого в атмосферу. Это помогает замедлять темпы глобального потепления, но имеет и обратную сторону. Растворяясь в воде, CO2 образует угольную кислоту, которая повышает концентрацию водородных ионов и приводит к снижению pH. Вода становится более кислой, а последствия этого процесса уже заметны для морских экосистем. Средний показатель кислотности океана сейчас равен примерно 8,1, тогда как еще недавно за условную норму брали значение 8,2. По прогнозам, к 2300 году уровень может упасть до 7,3 - это сделает океан почти в десять раз кислее нынешнего состояния. Для обитателей морей подобные изменения означают не просто сдвиг химического равновесия, а реальную угрозу физиологическим процессам, начиная от формирования раковин у моллюсков и заканчивая охотничьим поведением акул. Чтобы выяснить, как именно кислотная среда отражается на зубах акул, группа немецких исследователей провела эксп ...>>

Случайная новость из Архива

Микропластик способен проникать в мозг 03.06.2023

Крошечные пластиковые частицы попадают в организм с пищей, водой и воздухом, накапливаясь в тканях и клетках. Это уже не новость, и воспринимать это как данность. Ученые даже название вывели для этого явления - "пластикоз". Но считалось, что центральная нервная система достаточно защищена от проникновения постороннего материала гематоэнцефалическим барьером. Однако ученые выяснили, что пластик способен преодолевать его. И уже через пару часов после еды микропластик способен проникать даже в мозг.

Миллионы тон пластика, попадающие в природу каждый год, не лежат мертвым грузом. Медленно разлагаясь, они распространяются в почве, воде и воздухе, попадая в живые организмы. Крошечные пластиковые частицы накапливаются в растениях и животных. И впоследствии способны вызвать самые серьезные проблемы со здоровьем.

Как пластик находит дорогу в наши ткани? С едой он оказывается в кишечнике, откуда кровью и другими жидкостями разносятся по всему телу. Проникает в ткани, поражает даже клетки. До сих пор считалось, что пока остается один орган, надежно защищенный от пластикового загрязнения - это мозг.

Но новая работа ученых из Медицинского университета Вены показала, что ЦНС беззащитна перед пластиком. Эксперименты на мышах, получавших несколько частиц полистирола вместе с едой, продемонстрировали, что уже через два часа после еды мельчайшие оказывались в головном мозге животных.

Гематоэнцефалический барьер центральной нервной системы образован несколькими слоями особенно плотно уложенных клеток. Они контролируют движение веществ между ЦНС и другими частями организма. И защищают ее от микробов, токсинов и даже "наружных" иммунных клеток, способных нанести большой вред чувствительной нервной ткани. Как показали опыты Кеннера и его коллег, преодолеть эту границу способны только мелкие пластиковые частицы, размеры которых не превышают 0,001 миллиметра.

Ученые выяснили, что ключевую роль в способности микропластика проникать через гематоэнцефалический барьер играет его биомолекулярная корона. Только крошечный фрагмент пластика появляется в организме, его поверхность "облепляют" различные биологические вещества, включая холестерин. Именно наличие такой оболочки позволяет крошечным частицам преодолевать последний уровень защиты организма и оказываться в его святая святых - человеческом мозге.

Пока ученые затрудняются четко сказать, к каким нарушениям приведет накопление микропластика в теле. Но доподлинно известно, что пластикоз является, по меньшей мере, свидетельством загрязнения организма.

Другие интересные новости:

▪ Ультратонкий компьютер-на-кости

▪ Измерено магнитное поле черной дыры в центре Галактики

▪ Коврик-будильник Ruggie

▪ Названа причина бытрого роста черных дыр

▪ Сверхтонкий и гибкий электрофоретический дисплей

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Регуляторы тембра, громкости. Подборка статей

▪ статья Плутарх. Знаменитые афоризмы

▪ статья Почему в Саудовской Аравии запрещены игры о покемонах? Подробный ответ

▪ статья Принципы и методы реанимации. Медицинская помощь

▪ статья Интерфейс 1-wire. Энциклопедия радиоэлектроники и электротехники

▪ статья Нормы приемо-сдаточных испытаний. Измерительные трансформаторы тока. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025