Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Кеплер Иоганн. Биография ученого

Биографии великих ученых

Справочник / Биографии великих ученых

Комментарии к статье Комментарии к статье

Кеплер Иоганн
Иоганн Кеплер
(1571-1630).

Вскоре после смерти Коперника на основе его системы мира астрономы составили таблицы движений планет. Эти таблицы лучше согласовывались с наблюдениями, чем прежние таблицы, составлявшиеся еще по Птолемею. Но спустя некоторое время астрономы обнаружили расхождение и этих таблиц с данными наблюдений движения небесных тел.

Для передовых ученых было ясно, что учение Коперника правильно, но надо было глубже исследовать и выяснить законы движения планет. Эту задачу решил великий немецкий ученый Кеплер.

Иоганн Кеплер появился на свет 27 декабря 1571 года в маленьком городке Вайль-дер-Штадт близ Штутгарта. Кеплер родился в бедной семье, и поэтому ему с большим трудом удалось окончить школу и поступить в 1589 году в Тюбингенский университет. Здесь он с увлечением занимался математикой и астрономией. Его учитель профессор Местлин втайне был последователем Коперника. Конечно, в университете Местлин преподавал астрономию по Птолемею, но дома он знакомил своего ученика с основами нового учения. И вскоре Кеплер стал горячим и убежденным сторонником теории Коперника.

В отличие от Местлина, Кеплер не скрывал своих взглядов и убеждений. Открытая пропаганда учения Коперника очень скоро навлекла на него ненависть местных богословов. Еще до окончания университета, в 1594 году, Иоганна посылают преподавать математику в протестантское училище города Граца, столицы австрийской провинции Штирии.

Уже в 1596 году он издает "Космографическую тайну", где, принимая вывод Коперника о центральном положении Солнца в планетной системе, пытается найти связь между расстояниями планетных орбит и радиусами сфер, в которые в определенном порядке вписаны и вокруг которых описаны правильные многогранники. Несмотря на то что этот труд Кеплера оставался еще образцом схоластического, квазинаучного мудрствования, он принес автору известность. Знаменитый датский астроном-наблюдатель Тихо Браге, скептически отнесшийся к самой схеме, отдал должное самостоятельности мышления молодого ученого, знанию им астрономии, искусству и настойчивости в вычислениях и выразил желание встретиться с ним. Состоявшаяся позже встреча имела исключительное значение для дальнейшего развития астрономии.

В 1600 году приехавший в Прагу Браге предложил Иоганну работу в качестве своего помощника для наблюдений неба и астрономических вычислений. Незадолго перед этим Браге был вынужден оставить свою родину Данию и выстроенную им там обсерваторию, где он в течение четверти века вел астрономические наблюдения. Эта обсерватория была снабжена лучшими измерительными инструментами, а сам Браге был искуснейшим наблюдателем.

Когда датский король лишил Браге средств на содержание обсерватории, он уехал в Прагу. Браге с большим интересом относился к учению Коперника, но сторонником его не был. Он выдвигал свое объяснение устройства мира; планеты он признавал спутниками Солнца, а Солнце, Луну и звезды считал телами, обращающимися вокруг Земли, за которой, таким образом, сохранялось положение центра всей Вселенной.

Браге работал вместе с Кеплером недолго: в 1601 году он умер. После его смерти Кеплер начал изучать оставшиеся материалы с данными долголетних астрономических наблюдений. Работая над ними, в особенности над материалами о движении Марса, Кеплер сделал замечательное открытие: он вывел законы движения планет, ставшие основой теоретической астрономии.

Философы Древней Греции думали, что круг - это самая совершенная геометрическая форма. А если так, то и планеты должны совершать свои обращения только по правильным кругам (окружностям) Кеплер пришел к мысли о неправильности установившегося с древности мнения о круговой форме планетных орбит. Путем вычислений он доказал, что планеты движутся не по кругам, а по эллипсам - замкнутым кривым, форма которых несколько отличается от круга. При решении данной задачи Кеплеру пришлось встретиться со случаем, который, вообще говоря, методами математики постоянных величин решен быть не мог. Дело сводилось к вычислению площади сектора эксцентрического круга. Если эту задачу перевести на современный математический язык, придем к эллиптическому интегралу. Дать решение задачи в квадратурах Кеплер, естественно, не мог, но он не отступил перед возникшими трудностями и решил задачу путем суммирования бесконечно большого числа "актуализированных" бесконечно малых. Этот подход к решению важной и сложной практической задачи представлял собой в новое время первый шаг в предыстории математического анализа.

Первый закон Кеплера предполагает: Солнце находится не в центре эллипса, а в особой точке, называемой фокусом. Из этого следует, что расстояние планеты от Солнца не всегда одинаковое. Кеплер нашел, что скорость, с которой движется планета вокруг Солнца, также не всегда одинакова: подходя ближе к Солнцу, планета движется быстрее, а отходя дальше от него - медленнее. Эта особенность в движении планет составляет второй закон Кеплера. При этом Кеплер разрабатывает принципиально новый математический аппарат, делая важный шаг в развитии математики переменных величин.

Оба закона Кеплера стали достоянием науки с 1609 года, когда была опубликована его знаменитая "Новая астрономия" - изложение основ новой небесной механики. Однако выход этого замечательного произведения не сразу привлек к себе должное внимание: даже великий Галилей, по-видимому, до конца дней своих так и не воспринял законов Кеплера.

Потребности астрономии стимулировали дальнейшее развитие вычислительных средств математики и их популяризации. В 1615 году Кеплер выпустил сравнительно небольшую по объему, но весьма емкую по содержанию книгу - "Новая стереометрия винных бочек", в которой продолжил разработку своих интеграционных методов и применил их для нахождения объемов более чем 90 тел вращения, подчас довольно сложных. Там же им были рассмотрены и экстремальные задачи, что подводило уже к другому разделу математики бесконечно малых - дифференциальному исчислению.

Необходимость совершенствования средств астрономических вычислений, составление таблиц движений планет на основе системы Коперника привлекли Кеплера к вопросам теории и практики логарифмов. Воодушевленный работами Непера, Кеплер самостоятельно построил теорию логарифмов на чисто арифметической базе и с ее помощью составил близкие к неперовым, но более точные логарифмические таблицы, впервые изданные в 1624 году и переиздававшиеся до 1700 года. Кеплер же первым применил логарифмические вычисления в астрономии. "Рудольфинские таблицы" планетных движений он смог завершить только благодаря новому средству вычислений.

Проявленный ученым интерес к кривым второго порядка и к проблемам астрономической оптики привел его к разработке общего принципа непрерывности - своеобразного эвристического приема, который позволяет находить свойства одного объекта по свойствам другого, если первый получается предельным переходом из второго. В книге "Дополнения к Вителлию, или Оптическая часть астрономии" (1604) Кеплер, изучая конические сечения, интерпретирует параболу как гиперболу или эллипс с бесконечно удаленным фокусом - это первый в истории математики случай применения общего принципа непрерывности. Введением понятия бесконечно удаленной точки Кеплер предпринял важный шаг на пути к созданию еще одного раздела математики - проективной геометрии.

Вся жизнь Кеплера была посвящена открытой борьбе за учение Коперника. В 1617-1621 годах в разгар Тридцатилетней войны, когда книга Коперника уже попала в ватиканский "Список запрещенных книг", а сам ученый переживал особенно трудный период в своей жизни, он издает тремя выпусками общим объемом примерно в 1000 страниц "Очерки коперниканской астрономии". Название книги неточно отражает ее содержание - Солнце там занимает место, указанное Коперником, а планеты, Луна и незадолго до того открытые Галилеем спутники Юпитера обращаются по открытым Кеплером законам. Это был фактически первый учебник новой астрономии, и издан он был в период особенно ожесточенной борьбы церкви с революционным учением, когда учитель Кеплера Местлин, коперниканец по убеждениям, выпустил учебник астрономии по Птолемею!

В эти же годы Кеплер издает и "Гармонию мира", где он формулирует третий закон планетных движений. Ученый установил строгую зависимость между временем обращения планет и их расстоянием от Солнца. Оказалось, что квадраты периодов обращения любых двух планет относятся между собой как кубы их средних расстояний от Солнца. Это - третий закон Кеплера.

В течение многих лет он ведет работу по составлению новых планетных таблиц, напечатанных в 1627 году под названием "Рудольфинские таблицы", которые многие годы были настольной книгой астрономов. Кеплеру принадлежат также важные результаты в других науках, в частности в оптике. Разработанная им оптическая схема рефрактора уже к 1640 году стала основной в астрономических наблюдениях.

Работы Кеплера над созданием небесной механики сыграли важнейшую роль в утверждении и развитии учения Коперника. Им была подготовлена почва и для последующих исследований, в частности для открытия Ньютоном закона всемирного тяготения. Законы Кеплера и сейчас сохраняют свое значение: научившись учитывать взаимодействие небесных тел, ученые их используют не только для расчета движений естественных небесных тел, но, что особенно важно, и искусственных, таких как космические корабли, свидетелями появления и совершенствования которых является наше поколение.

Открытие законов обращения планет потребовало от ученого многих лет упорной и напряженной работы. Кеплеру, терпевшему гонения и со стороны католических правителей, которым он служил, и со стороны единоверцев-лютеран, не все догмы которых он мог принять, приходится много переезжать. Прага, Линц, Ульм, Саган - неполный список городов, в которых он трудился.

Кеплер занимался не только исследованием обращения планет, он интересовался и другими вопросами астрономии. Его внимание особенно привлекали кометы. Подметив, что хвосты комет всегда обращены в сторону от Солнца, Кеплер высказал догадку, что хвосты образуются под действием солнечных лучей. В то время ничего еще не было известно о природе солнечного излучения и строении комет. Только во второй половине XIX века и в XX веке было установлено, что образование хвостов комет действительно связано с излучением Солнца.

Умер ученый во время поездки в Регенсбург 15 ноября 1630 года, когда тщетно пытался получить хоть часть жалованья, которое за много лет задолжала ему императорская казна.

Ему принадлежит огромная заслуга в развитии наших знаний о Солнечной системе. Ученые последующих поколений, оценившие значение трудов Кеплера, назвали его "законодателем неба", так как именно он выяснил те законы, по которым совершается движение небесных тел в солнечной системе.

Автор: Самин Д.К.

 Рекомендуем интересные статьи раздела Биографии великих ученых:

▪ Гюйгенс Христиан. Биография

▪ Зинин Николай. Биография

▪ Винер Норберт. Биография

Смотрите другие статьи раздела Биографии великих ученых.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Большой адронный коллайдер прекращает работу 16.01.2026

Физика элементарных частиц - одна из самых передовых областей науки, где каждый эксперимент может изменить наше понимание мироздания. Центральным инструментом этих исследований является Большой адронный коллайдер (LHC), уникальный ускоритель частиц, позволяющий изучать самые фундаментальные законы природы. Недавно стало известно, что LHC временно прекращает свою работу для масштабной модернизации, которая подготовит его к новому этапу экспериментов с гораздо большей производительностью. Коллайдер, расположенный в подземном тоннеле вдоль швейцарско-французской границы, создает столкновения частиц на невероятно высоких энергиях. Именно здесь в 2012 году ученые открыли бозон Хиггса - ключевую частицу, объясняющую, почему другие элементарные частицы имеют массу. Это открытие стало одним из самых значимых событий современной физики и подтвердило предсказания Стандартной модели. Причиной временной остановки LHC стало развертывание проекта High-Luminosity LHC (HL-LHC). Модернизация позв ...>>

Робот-бармен AI Barmen 16.01.2026

Американские инженеры создали AI Barmen - робота-бармена, способного не только готовить коктейли, но и запоминать предпочтения гостей. AI Barmen представляет собой автономную систему, которую можно устанавливать практически в любых местах - от баров и ресторанов до гостиниц, аэропортов и корпоративных мероприятий. Робот сочетает механический манипулятор с интеллектуальной программой, которая подбирает напитки на основе истории заказов конкретного пользователя. Гости могут оставаться анонимными или разрешить системе запоминать их вкусы, что позволяет получать одинаково качественный персонализированный коктейль в любой точке, где установлен AI Barmen. Робот готовит широкий спектр коктейлей с высокой точностью, контролирует запасы ингредиентов и автоматически ведет учет, что снижает затраты и минимизирует ошибки. Для работы устройства достаточно стандартной розетки, подключение к воде не требуется, что делает его мобильным и удобным для эксплуатации в самых разных условиях. Систе ...>>

Стерильного нейтрино не существует 15.01.2026

В физике элементарных частиц поиск новых, пока не обнаруженных объектов играет ключевую роль в понимании устройства Вселенной. Иногда такие поиски приводят к громким открытиям, а иногда - к не менее важным отрицательным результатам, которые позволяют отбросить неверные направления. Именно к таким случаям относится недавний вывод ученых о судьбе стерильного нейтрино - одной из самых интригующих гипотетических частиц последних десятилетий. Исследователи из американской лаборатории Fermilab официально сообщили, что им не удалось найти доказательства существования стерильного нейтрино. К такому выводу пришла команда эксперимента MicroBooNE после многолетнего анализа столкновений нейтрино, которые ранее рассматривались как возможный намек на существование четвертого типа этих частиц. Предполагалось, что стерильное нейтрино взаимодействует с материей исключительно через гравитацию, что делало его крайне трудным объектом для обнаружения. В рамках современной физики нейтрино известны в т ...>>

Случайная новость из Архива

Упаковка для длительного хранения продуктов питания без холодильника 14.07.2024

В условиях нестабильной энергетической ситуации и необходимости сохранять продукты питания без использования холодильников, инновационные решения становятся крайне актуальными. Одним из таких решений стала разработка упаковки на основе пчелиного воска, созданная учеными из Университета Кардиффа в сотрудничестве с украинскими пчеловодами.

Проблема скоропортящихся продуктов особенно остро стоит в ситуациях, когда доступ к электричеству ограничен. Без надежного способа хранения продукты быстро теряют свежесть, что приводит к пищевым отходам и дефициту продовольствия. Исследователи из Университета Кардиффа предложили естественный и экологически чистый способ решения этой проблемы, разработав упаковку из пчелиного воска.

Лес Бэй и его коллеги из Университета Кардиффа объединились с украинскими пчеловодами для создания новой упаковки. Они смешали ткань или бумагу с пчелиным воском и добавили природные противомикробные растения, такие как шалфей. Такая комбинация позволяет создать обертку, способную продлить срок хранения продуктов за счет своих антимикробных свойств.

Команда ученых разработала и протестировала различные рецепты, чтобы найти наиболее эффективные комбинации для хранения продуктов. Лес Бэй отметил: "Магия состоит в смеси. Мы использовали пчелиный воск и природные антимикробные компоненты, чтобы создать обертку, которая может быть использована для различных продуктов, а не только для сэндвичей".

Украинские пчеловоды внесли значительный вклад в этот проект, предоставив пчелиный воск и помогая тестировать различные ульи. "У них много пчелиного воска и много пчел. Обнаружив правильный воск с нужными свойствами, у нас есть шанс еще больше продлить срок хранения продуктов питания", - пояснил Бэй.

Использование оберток из пчелиного воска особенно важно в условиях отсутствия холодильников и электроэнергии. Такая упаковка не может сохранить свежесть продуктов на неопределенный срок, но способна продлить их срок хранения на несколько дней. Это является важным шагом в борьбе с пищевыми отходами и обеспечении продовольственной безопасности.

Разработка упаковки на основе пчелиного воска представляет собой значительный прорыв в технологии хранения продуктов питания. Это экологически чистое и эффективное решение, которое может быть использовано в различных условиях, особенно в ситуациях, когда доступ к холодильникам ограничен. Сотрудничество британских ученых и украинских пчеловодов показало, как использование природных материалов и традиционных методов может привести к созданию инновационных решений, способных изменить подход к хранению продуктов питания.

Другие интересные новости:

▪ Умный материал на основе кожи акул

▪ Карликовая Солнечная система

▪ Крепкий пластик, разлагающийся за несколько дней

▪ Нанопроволока вместо жесткого диска

▪ Источник питания PID-250 с двумя выходами

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Должностные инструкции. Подборка статей

▪ статья Аэрозольный баллон. История изобретения и производства

▪ статья Как число доступных для спаривания самок влияет на сексуальную активность самцов? Подробный ответ

▪ статья Пожарная безопасность при работе в деревообделочных цехах и расходных складах лесоматериалов. Типовая инструкция по охране труда

▪ статья Конвертер интерфейса RS232-RS422. Энциклопедия радиоэлектроники и электротехники

▪ статья Диапазон 160 метров в Радио-76. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2026