Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


MPEG-2 и нелинейный видеомонтаж. Просто о сложном

Искусство видео

Справочник / Искусство видео

Комментарии к статье Комментарии к статье

В последнее время среди профессионалов мира видео все чаще можно слышать разговоры об MPEG-2-кодировании. Внимание к нему сегодня растет чуть ли не быстрее реального расширения сфер его практического применения. Действительно, интересуемся ли мы эффективным алгоритмом компрессии в задачах нелинейного монтажа и видеопроизводства, задумываемся ли о создании собственных DVD-фильмов или цифровых видеоархивов, анализируем ли принципы записи Betacam SX или стандартов хранения данных на видеосерверах, наконец, обсуждаем ли особенности цифровой передачи программ в кабельном и спутниковом телевидении, везде мы сталкиваемся с упоминанием об MPEG-2. Из приведенного перечисления ясно, что этот алгоритм многолик и многогранен, так что специалисты разных областей, говоря об MPEG, порой думают о разном. Но, на самом деле, не столь он сложен, чтобы не понять его основные принципы. Так давайте разберемся.

Основные понятия

Напомню, что MPEG - аббревиатура от Moving Pictures Experts Group, названия комитета по стандартизации методов цифровой компрессии потоков видеоданных международной организации ISO/IEC (International Standards Organization/International Electrotechnical Commission). Первоначально задача комитета заключалась в разработке формата хранения и проигрывания аудио/видеоданных с компакт-дисков CD-ROM. В результате был создан стандарт MPEG-1, ориентированный на низкоскоростные (около 1 Мбит/с) каналы передачи информации и ограниченный разрешением кадра 352 x 288 (для PAL-сигнала). Затем по мере расширения задач передачи видео, повышения пропускной способности каналов и роста требований к визуальному качеству получаемых изображений появились MPEG-2, MPEG-4 и даже MPEG-7, оптимизированные под особые условия.

Так, MPEG-4 предназначен главным образом для цифровой передачи видеоданных по телефонным линиям (Интернет, видеоконференции) в условиях жестко ограниченной пропускной способности (типично - 28,8 Кбит/с), а потому уменьшает разрешение еще в четыре раза - до 176 x 144, но использует самую продвинутую схему кодирования с разделением изображения на такие независимые объекты, как фон, текст, 2D/3D-графика, "разговаривающие" человеческие лица, двигающиеся тела и т. д. Но в силу очевидной сложности этот стандарт пока не получил практической реализации.

Что касается MPEG-2, то изначально он был нацелен на решение задачи передачи телевизионных изображений. Каждый из нас по собственному опыту знает, что качество наблюдаемой в телевизоре картинки бывает очень разным. Одно дело смотреть фильм, воспроизводимый на домашнем видеомагнитофоне или передаваемый по местному кабельному телевидению, и совсем другое - наслаждаться видео с DVD или спутникового канала. MPEG-2, как определено в документе ISO/IEC 13818-2, объединяет семейство взаимосогласованных и совместимых сверху вниз цифровых стандартов сжатия телевизионных сигналов. Точнее, он допускает 4 уровня (Levels) разрешения кадра и 5 базовых профилей (Profiles) кодирования сигналов яркости и цветности.

Уровни: низкий LL (Low Level) с разрешением кадра 352 х 288 (соответствует MPEG-1), основной ML (Main Level) 720 х 576, высокий HL-1440 (High Level) 1440 х 1152 и высокий HL-1920 1920 х х 1152. Отметим, что если согласно Рекомендации ITU-R BT.601 (International Telecommunications Union - Recommendation) основной уровень определяет разрешение стандартного телевизионного кадра, то высокие уровни ориентированы на телевидение высокой четкости.

Профили: простой SP (Simple Profile), основной MP (Main Profile), два масштабируемых - по отношению сигнал/шум SNR Scalable Profile и по разрешению Spatially Scalable Profile и, наконец, высокий HP (High Profile). Важное место также занимает не установленный стандартом, но активно используемый на практике так называемый основной-профессиональный, или, по-другому, MPEG 422-профиль. Его обозначают как 422Р. Если с уровнями все довольно просто, то для того, чтобы разобраться в различиях профилей, требуются некоторые предварительные пояснения.

Немного теории

Эффективное сжатие видеоинформации зиждется на двух основных идеях: подавление несущественных для визуального восприятия мелких деталей пространственного распределения отдельных кадров и устранение временной избыточности в последовательности этих кадров. Отсюда понятие пространственной и временной компрессии.

В первой из них используется экспериментально установленная малая чувствительность человеческого восприятия к искажениям мелких деталей изображения. Глаз быстрее замечает неоднородность равномерного фона, чем искривление тонкой границы или изменение яркости и цвета малого участка. В математике известны два эквивалентных представления изображения: привычное нам пространственное распределение яркости и цвета и так называемое частотное распределение, связанное с пространственным дискретным косинусным преобразованием (ДКП). В теории они равнозначны и обратимы, но сохраняют информацию о структуре изображения совершенно по-разному: передачу плавных изменений фона обеспечивают низкочастотные (центральные) значения частотного распределения, а за мелкие детали пространственного распределения отвечают высокочастотные коэффициенты.

Это позволяет использовать следующий алгоритм сжатия. Кадр разбивается на блоки размером 16 х 16 (размеру 720 х х 576 соответствует 45 х 36 блоков), каждый из которых ДКП переводит в частотную область. Затем соответствующие частотные коэффициенты подвергаются квантованию (округлению значений с задаваемым интервалом). Если само по себе ДКП не приводит к потере данных, то квантование коэффициентов неизбежно вызывает огрубление изображения. Операция квантования выполняется с переменным интервалом - наиболее точно передается низкочастотная информация, в то время как многие высокочастотные коэффициенты принимают нулевые значения. Это обеспечивает значительное сжатие потока данных, но приводит к снижению эффективного разрешения и возможному появлению незначительных ложных деталей (в частности, на границах блоков). Очевидно, чем грубее используемое квантование, тем больше степень сжатия, но тем ниже качество результирующего сигнала.

Напомню, что этот алгоритм пришел из цифровой фотографии, где он был разработан под именем JPEG для эффективного сжатия отдельных кадров (JPEG - аббревиатура названия утвердившего его международного объединения Joint Photographic Experts Group). Затем он был успешно применен для видеопоследовательностей кадров (при этом каждый из них обрабатывается совершенно независимо) и получил новое наименование M-JPEG (Motion-JPEG). Необходимо также отметить, что DV-кодировка цифровых стандартов DV/DVCAM/DVCPRO принципиально основана на том же алгоритме, но использует более гибкую схему с адаптивным подбором таблиц квантования. В отличие от M-JPEG коэффициент компрессии для различных блоков меняется по изображению: для малоинформативных блоков (например, на краях изображения) он увеличивается, а для блоков с большим количеством мелких деталей уменьшается относительно среднего по изображению уровня. В результате при том же качестве достигается сокращение объема данных примерно на 15% (или наоборот - при том же потоке выше качество выходного сигнала).

Временная MPEG-компрессия использует высокую избыточность информации в изображениях, разделенных малым интервалом. Действительно, между смежными изображениями обычно меняется только малая часть сцены - например, происходит плавное смещение небольшого объекта на фоне фиксированного заднего плана. В этом случае полную информацию о сцене нужно сохранять только выборочно - для опорных изображений. Для остальных достаточно передавать только разностную информацию: о положении объекта, направлении и величине его смещения, новых элементах фона (открывающихся за объектом по мере его движения). Причем эти различия можно формировать не только в сравнении с предыдущими изображениями, но и с последующими (поскольку именно в них по мере движения объекта открывается часть фона, ранее скрытая за объектом). Наиболее математически сложным элементом является поиск смещающихся, но мало изменяющихся по структуре блоков (16 х 16) и определение соответствующих векторов их смещения. Однако этот элемент наиболее существен, так как позволяет заметно уменьшить объем требуемой информации. Именно эффективностью выполнения этого "интеллектуального" элемента в реальном времени и отличаются различные MPEG-кодеры.

Таким образом, в MPEG-кодировке принципиально формируются три типа кадров: I (Intra) - выполняющие роль опорных и сохраняющие полный объем информации о структуре изображения; P (Predictive) - несущие информацию об изменениях в структуре изображения по сравнению с предыдущим кадром (типов I или P); B (Bi-directional) - сохраняющие только самую существенную часть информации об отличиях от предыдущего и последующего изображений (только I или P). Принципиальная схема последующей компрессии I-кадров, так же как и разностных P- и B-кадров, аналогична M-JPEG, но, как и у DV, с адаптивной подстройкой таблиц квантования. В частности, это позволяет охарактеризовать DV-сигнал как частный случай MPEG-последовательности из I-кадров с заданным фиксированным потоком (коэффициентом компрессии). Последовательности I-, P-, B-кадров объединяются в фиксированные по длине и структуре группы кадров - GOP (Group of Pictures). Каждая GOP обязательно начинается с I и с определенной периодичностью содержит P-кадры. Ее структуру описывают как M/N, где M - общее число кадров в группе, а N - интервал между P-кадрами. Так, типичная для Video-CD и DVD IPB группа 15/3 имеет следующий вид: IBBPBBPBBPBBPBB. Здесь каждый B-кадр восстанавливается по окружающим его P-кадрам (в начале и конце группы - по I и Р), а в свою очередь каждый Р-кадр - по предыдущему Р- (или I-) кадру. В то же время I-кадры самодостаточны и могут быть восстановлены независимо от других, но являются опорными для всех P- и тем более B-кадров группы. Следовательно, у I и P наименьшая степень компрессии, у В - наибольшая. Установлено, что по размеру типичный Р-кадр составляет 1/3, а B - 1/8 от I.

В результате MPEG-последовательность IPPP (GOP 4/1) обеспечивает двукратное уменьшение требуемого потока данных (при том же качестве) по сравнению с последовательностью только из I-кадров, а использование GOP 15/3 позволяет достичь четырехкратного сжатия.

Профили MPEG-2

Теперь мы вправе вернуться к описанию различных профилей. В простом профиле SP осуществляется только компенсация движения и предсказание по одному направлению (P-кадры). В основном профиле MP-предсказание выполняется по двум направлениям, т. е. допускаются B-кадры. В масштабируемых профилях осуществляется разделение исходного цифрового потока видеоданных на несколько частей по различным критериям. В масштабируемом по отношению сигнал/шум SNR Scalable Profile поток разделяют на две части. Первая из них - основной сигнал - несет информацию с пониженным отношением сигнал/шум (более грубая дискретизация). Но эта часть защищается более устойчивым к помехам передачи алгоритмом (и, соответственно, требующим больше битов), принимается в сильных шумах и позволяет даже при неблагоприятных условиях восстановить ТВ-изображение (хотя и с пониженным отношением сигнал/шум). Менее защищенная вторая часть - так называемый дополнительный сигнал - при неустойчивом приеме просто отбрасывается. При устойчивом приеме он позволяет дополнить основной сигнал и повысить отношение сигнал/шум до исходного значения.

Пространственно масштабируемый профиль Spatially Scalable Profile еще более усложняет схему кодирования. В нем поток разделится уже на три части - по критерию разрешения. Первая часть - основной сигнал, обеспечивает устойчивую к помехам информацию об изображении стандартного разрешения (625 строк, из них активных - 576). Вторая часть дополняет информацию до изображения высокой четкости (1250 строк, 1152 активных). Ну а декодирование третьего сигнала позволяет повысить отношение сигнал/шум.

Пятый профиль HP - высший -включает в себя все функции предыдущих, но использует YUV-представление не 4:2:0, а 4:2:2, т. е. передает цветоразностные сигналы в два раза чаще (в каждой строке, в каждом элементе строки).

Здесь опять требуется пояснение. Известно, что телевизионный сигнал представляет собой совокупность сигнала яркости Y и двух цветоразностных сигналов U и V. Вариации их значений допускают 256 градаций (от 0 до 255 - для Y и от -128 до 127 - для U/V), что в двоичном исчислении соответствует 8 битам, или 1 байту. Теоретически каждый элемент кадра имеет собственные значения YUV, т. е. требует 3 байтов. Такое представление, когда и яркость, и сигналы цветности имеют равное число независимых значений, обычно обозначают как 4:4:4. Но зрительная система человека менее чувствительна к цветовым пространственным изменениям, чем к яркостным. И без видимой потери качества число цветовых отсчетов в каждой строке можно уменьшить вдвое. Именно такое представление, обозначаемое как 4:2:2, было принято в вещательном телевидении. При этом для передачи полного значения телевизионного сигнала в каждом отсчете кадра достаточно 2 байтов (чередуя через отсчет независимые значения U и V). Более того, для целей потребительского видео признано допустимым уменьшение вдвое и вертикального цветового разрешения, т. е. перейти к представлению 4:2:0. Это уменьшает приведенное число байтов на отсчет до 1,5. Отметим, что именно такое представление было заложено в DV-формат цифровых камер, а также в формат DVD-видео.

Однако в профессиональных задачах цифрового редактирования и монтажа видео, когда возможно многократное и многослойное использование фрагментов отснятого материала и включение в него компьютерной графики, во избежание результирующего накапливания ошибок изначально требуется более высокое качество цифрового видео. Поэтому здесь считается обязательным представление 4:2:2. Именно этим отличается профиль 422P от основного. В табл. 1 обобщены различия всех описанных профилей.

Таблица 1

Функции /  Простой  Основной  422P Масштаби- Пространственно Высокий 
Профиль (SP) (MP)   руемый масштабируемый (HP)
I-кадры - - - - -
P-кадры - - - - - -
B-кадры   - - - - -
Разделение по SNR       - - -
Разделение по разрешению         - -
YUV-представление 4:2:0 4:2:0 4:2:2 4:2:0 4:2:0 4:2:2

Компрессия звука

До сих пор речь шла только о компрессии изображений. Но полноценное видео подразумевает и звуковую составляющую. Считается, что звук CD-качества требует оцифровки с частотой 44,1 кГц при глубине 16 бит на канал, что соответствует потоку в 706 Кбит/с на канал (1,4 Мбит/с для стерео). DAT-качество сигнала определяет частоту оцифровки в 48 кГц (полоса частот 4-24 000 Гц) и увеличивает поток до 768 Кбит/с на канал. Подход к сжатию информации тот же - отбрасывание части, не очень существенной для восприятия человеческим ухом. MPEG-стандарт разрешает три уровня (Layer) компрессии аудио. Layer 1 использует наиболее простой алгоритм с минимальной компрессией, что предполагает 192 Кбит/с на канал. Алгоритм Layer 2 более сложный, зато и степень компрессии больше - 128 Кбит/с на канал. Мощный алгоритм сжатия цифрового звука CD-качества (в 11 раз без различаемых человеческим ухом потерь) Layer 3 обеспечивает максимально возможное качество звука при жестких ограничениях потока - не более 64 Кбит/с на канал. В основном он предназначен для Интернет. Его значение столь велико, что он получил особое сокращенное наименование MP3, что означает MPEG Layer 3.

Появилось множество Интернет-сайтов, содержащих сотни тысяч MP3-файлов с популярной музыкой. С помощью специальных программ проигрывания (Real Audio) MP3-музыку можно в реальном времени слушать через Интернет, ее можно неограниченно копировать (предостережение: типичная песня занимает от 2 до 8 Мбайт) и нелегально распространять. Уже появились портативные MP3-плееры ценой около $200 (например, Diamond Rio). Музыкальная индустрия, неся ощутимые потери, начала активную борьбу с MP3-сайтами (Recording Industry Association of America нашла и добилась закрытия большей их части). Но джин выпущен, всех не закроешь. Фирма Adaptec предсказывает миллиарды загруженных через Интернет песен в ближайшие годы и заявляет о поддержке MP3 в следующей версии программы EasyCD Creator. Однако в задачах цифрового редактирования сжатие аудиосигналов не используется, поэтому в расчетах допустимых потоков на звуковую составляющую необходимо отводить до 1,5 Мбит/с.

MPEG-2 в задачах нелинейного монтажа

Термин "нелинейный монтаж" не соответствует сути процесса, а лишь отражает одну из его характеристик. На самом деле речь идет о монтаже видеофильмов, осуществляемом в цифровой форме на компьютерах. При этом исходные видеофрагменты подвергаются обязательной оцифровке и записи на винчестер в виде соответствующих файлов. В отличие от накопителей на магнитных лентах доступ к любому из этих файлов-фрагментов не требует утомительной перемотки (а этот процесс - линейный), т. е. все кадры видео доступны в произвольном порядке. Это важное свойство и обусловило название цифрового монтажа как нелинейного, хотя, очевидно, возможности цифровой обработки намного шире и богаче.

Напомним, что согласно Рекомендации ITU-R BT.601 телевизионный кадр представляет собой матрицу 720 х 576. Принимая во внимание телевизионную кадровую частоту в 25 Гц, приходим к выводу, что одна секунда цифрового видео в представлении 4:2:2 требует 20 736 000 байтов (25 x 2 x 720 x 576), т. е. поток данных составляет 21 Мбайт/с. Запись подобных потоков технически осуществима, но она сложная, дорогостоящая и неэффективная с точки зрения последующей обработки. На практике с учетом реальных возможностей требуется значительное уменьшение потоков. Известно множество алгоритмов, осуществляющих компрессию без потери информации, но даже самые эффективные из них на типичных изображениях не обеспечивают более чем двукратного сжатия.

До недавнего времени в мире систем нелинейного видеомонтажа безраздельно царил M-JPEG. Различные решения отличались степенью компрессии, что соответствовало различным уровням качества результирующего видео. Весьма условно здесь можно выделить четыре уровня: стандартное видео (VHS, C-VHS, Video8), супервидео (SVHS, C-SVHS, Hi8), цифровое видео (Betacam SP, DV/DVCAM/DVCPRO, miniDV, Digital8) и студийное видео (Digital S, DVCPRO50). Для простоты в дальнейшем будем обозначать их как Video, S-Video, DV и Studio-TV. Количественно они обычно характеризуются горизонтальным разрешением (числом различаемых в строке элементов - телевизионных линий). Считается, что Video обеспечивает разрешение до 280 линий и соответствует M-JPEG-потоку около 2 Мбайт/с, S-Video - 400 линий и 4 Мбайт/с, DV - 500 линий и 3,1 Мбайт/с, а Studio-TV - разрешение не менее 600 линий при потоках в 7 Мбайт/с. Коэффициенты компрессии составляют соответственно 10:1, 5:1, 5:1 и 3:1 (напомним, что DV-алгоритм эффективнее M-JPEG). Но даже подобное сжатие требует для хранения и обработки видеофайлов значительных объемов дискового пространства. Например, одна минута M-JPEG-видео требует 120 Мбайт для качества Video и около 500 Мбайт для Studio-TV. Но ведь хочется работать с роликами продолжительностью в десятки минут!

И вот здесь на арену выходит MPEG-2. Даже переход к I-кадрам позволяет сэкономить 15% объема, а если использовать P-кадры, то выигрыш может увеличиться вдвое (для групп IPPP), а это уже существенно. Правда, бытует мнение, что в последнем случае утрачивается одно из основных преимуществ нелинейного монтажа, а именно его покадровая точность. На самом деле это заблуждение. По разностным P-кадрам исходная структура изображений легко и быстро восстанавливается (для современных процессоров подобная задача не составляет труда и выполняется в реальном времени). Что касается точности восстановления, то в длинных группах и/или при наличии B-кадров она действительно заметно падает. Поэтому, например, DVD-Video (GOP 15/3) не подлежит редактированию. В то же время у коротких групп только из I- и P-кадров восстановление происходит практически без накопления ошибок. Таким образом, при MPEG-2-кодировании 422P@ML для обеспечения студийного качества достаточно потока в 50 Мбит/с при I-кадрах (I-frame only) и в 25 Мбит/с при группе IPPP (см. табл. 2).

Таблица 2

 Тип компрессии

Video

S-Video

DV

Studio-TV

 M-JPEG, Мбит/с

16

32

38

56

 I-frame 422P@ML, Мбит/с

14

28

33

49

 I-frame MP@ML, Мбит/с

10

21

25

37

 IPPP 422P@ML, Мбит/с

7

14

17

24

 IPPP MP@ML, Мбит/с

5

10

12,5

18

 IBP 15/3 MP@ML, Мбит/с

2,5

5

6

9

Именно в таком направлении и развиваются современные системы нелинейного монтажа. Пока примеров их немного. Это FAST 601 [six-o-one], Pinnacle miroVideo DC1000 и Matrox DigiSuite DTV. Но преимущества данного подхода столь очевидны, что в ближайшем будущем обязательно появятся и другие решения.

Автор: Андрей Ряхин, по материалам digitalvideo.ru

 Рекомендуем интересные статьи раздела Искусство видео:

▪ Освещение объекта

▪ Глоссарий DVD формата

▪ Полезные советы по видеомонтажу

Смотрите другие статьи раздела Искусство видео.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Лабораторная модель прогнозирования землетрясений 30.11.2025

Предсказание землетрясений остается одной из самых сложных задач геофизики. Несмотря на развитие сейсмологии, ученые все еще не могут точно определить момент начала разрушительного движения разломов. Недавние эксперименты американских исследователей открывают новые горизонты: впервые удалось наблюдать микроскопические изменения в контактной зоне разломов, которые предшествуют землетрясению. Группа под руководством Сильвена Барбота обнаружила, что "реальная площадь контакта" - участки, где поверхности разлома действительно соприкасаются - изменяется за миллисекунды до высвобождения накопленной энергии. "Мы открыли окно в сердце механики землетрясений", - отмечает Барбот. Эти изменения позволяют фиксировать этапы зарождения сейсмического события еще до появления традиционных сейсмических волн. Для наблюдений ученые использовали прозрачные акриловые материалы, через которые можно было отслеживать световые изменения в зоне контакта. В ходе искусственного моделирования примерно 30% ко ...>>

Музыка как естественный анальгетик 30.11.2025

Ученые все активнее исследуют немедикаментозные способы облегчения боли. Одним из перспективных направлений становится использование музыки, которая способна воздействовать на эмоциональное состояние и когнитивное восприятие боли. Новое исследование международной группы специалистов демонстрирует, что даже кратковременное прослушивание любимых композиций может значительно снижать болевые ощущения у пациентов с острой болью в спине. В эксперименте участвовали пациенты, обратившиеся за помощью в отделение неотложной помощи с выраженной болью в спине. Им предлагалось на протяжении десяти минут слушать свои любимые музыкальные треки. Уже после этой короткой сессии врачи фиксировали заметное уменьшение интенсивности боли как в состоянии покоя, так и при движениях. Авторы исследования подчеркивают, что музыка не устраняет саму причину боли. Тем не менее, она воздействует на эмоциональный фон пациента, снижает уровень тревожности и отвлекает внимание, что в сумме приводит к субъективном ...>>

Алкоголь может привести к слобоумию 29.11.2025

Проблема влияния алкоголя на стареющий мозг давно вызывает интерес как у врачей, так и у исследователей когнитивного старения. В последние годы стало очевидно, что границы "безопасного" употребления спиртного размываются, и новое крупное исследование, проведенное международной группой ученых, вновь указывает на это. Работы Оксфордского университета, выполненные совместно с исследователями из Йельского и Кембриджского университетов, показывают: даже небольшие дозы алкоголя способны ускорять когнитивный спад. Команда проанализировала данные более чем 500 тысяч участников из британского биобанка и американской Программы миллионов ветеранов. Дополнительно был выполнен метаанализ сорока пяти исследований, в общей сложности включавших сведения о 2,4 миллиона человек. Такой масштаб позволил оценить не только прямую связь между употреблением спиртного и развитием деменции, но и влияние генетической предрасположенности. Один из наиболее тревожных результатов касается людей с повышенным ге ...>>

Случайная новость из Архива

Борьба с комарами по-массачусетсски 20.06.2008

Инженеры из США придумали прибор, который быстро уничтожает всех комаров на площади в 40 соток.

Проблема летней борьбы с кровососущей мошкарой стоит не только перед обитателями северных и умеренных широт Евразии, но и по другую сторону земного шара, в Северной Америке. Например, американские инженеры из компании "Кац Инк." штата Массачусетс решили-таки подступиться к, казалось бы, нерешаемой проблеме полного уничтожения комаров на отдельно взятом клочке земли. Для этого они создали ловушку-пылесос.

"Мы замаскировали пылесос под жилье. Для этого к нему прилагается ароматизатор, содержащий молочную кислоту и октанол - наиболее привлекательные для комарихи компоненты запаха человека. Кроме того, в состав устройства входят горелка и баллон с пропаном. Газ горит и выделяет тепло, а также углекислый газ. Сочетание тепла, ароматов, влажности и углекислого газа подобрано так, чтобы комариха приняла пылесос за настоящее жилье и попала в ловушку", рассказывает руководитель проекта Кристин Андерсон.

Испытания показали, что именно повышенное содержание углекислого газа вокруг новой ловушки наиболее притягательно для комарих. Ежемесячно тысячи их находили свой конец в специальном накопителе.

С учетом того, что это насекомое редко когда пролетает путь более километра от места рождения, в течение месяца после начала круглосуточной работы устройства число комаров на площади в 40 соток вокруг него резко снижалось.

Другие интересные новости:

▪ Занятия в старых спортзалах эффективнее, чем в современных

▪ Беспроводной процессор Wavecom

▪ В самолетах разрешат пользоваться мобильными устройствами

▪ Умная кровать с регулировкой температуры и упругости

▪ Базовая станция ZTE Pre5G Massive MIMO

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Радиоприем. Подборка статей

▪ статья Парацельс. Знаменитые афоризмы

▪ статья Что такое МРТ? Подробный ответ

▪ статья Главный механик. Должностная инструкция

▪ статья Слюдопластовые электроизоляционные материалы. Энциклопедия радиоэлектроники и электротехники

▪ статья Устранение проскальзывания пассиков в видеомагнитофонах. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025