Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Все о системах NTSC, PAL и SECAM

Искусство видео

Справочник / Искусство видео

Комментарии к статье Комментарии к статье

Если вы решите приобретать камеру за рубежом, особенно в США и Японии, будьте крайне осторожны. Цены в этих странах чрезвычайно привлекательны, только все видео оборудование рассчитано для работы в NTSC (правда, специально для русских туристов есть магазины, торгующие электроникой в системе PAL, но здесь надо быть вдвойне бдительными).

В этой связи, есть смысл углубиться в понятие таких аббривиатуар, как NTSC, PAL, SECAM

Итак...

NTSC - это сокр. англ. National Television Standards Committee - Национальный комитет по телевизионным стандартам - система аналогового цветного телевидения, разработанная в США. 18 декабря 1953 года впервые в мире было начато цветное телевизионное вещание с применением именно этой системы. NTSC принята в качестве стандартной системы цветного телевидения также в Канаде, Японии и ряде стран американского континента.

Технические особенности NTSC:

  • количество полей - 60 Гц (точнее 59,94005994 Гц);
  • количество строк (разрешение) - 525;
  • частота поднесущей - 3579545,5 Гц.
  • количество кадров в секунду - 30.
  • развертка луча чересстрочная (интерлейсинг).

PAL - это сокр. от англ. phase-alternating line - система аналогового цветного телевидения, разработана инженером немецкой компании "Telefunken" Вальтером Брухом и представленная как стандарт телевизионного вещания в 1967 году.

Как и все аналоговые телевизионные стандарты, PAL является адаптированным и совместимым с более старым монохромным (черно-белым) телевещанием. В адаптированных аналоговых стандартах цветного телевещания дополнительный сигнал цветности передается в конце спектра монохромного телесигнала.

Как известно из природы зрения человека, ощущение цвета складывается из трех составляющих: красного (R), зеленого (G) и синего (B) цветов. Такую цветовую модель обозначают аббревиатурой RGB. Из-за преобладания в среднестатистической телевизионной картинке зеленой составляющей цвета и для избежания избыточного кодирования, в качестве дополнительного сигнала цветности используют разность R-Y и B-Y (Y - общая яркость монохромного телесигнала). В системе PAL используют цветовую модель YUV.

Оба дополнительных сигнала цветности в стандарте PAL передаются одновременно в квадратурной модуляции (разновидность AM), типичная частота поднесущего сигнала - 4433618,75 Гц (4,43 МГц).

При этом каждый цветоразностный сигнал повторяют в следующей строке с поворотом фазы с частотой 15,625 кГц на 180 градусов, благодаря чему декодер PAL полностью устраняет фазовые ошибки (типичные для системы NTSC). Для устранения фазовой ошибки декодер складывает текущую строку и предыдущую из памяти (в аналоговых телевизионных приемниках используется линия задержки). Таким образом, объективно, цветное телевизионное изображение в стандарте PAL имеет в два раза меньшее разрешение по вертикали, чем монохромное изображение.

Субъективно, в силу большей чувствительности глаза к яркостной составляющей, на среднестатистических картинках такое ухудшение почти не заметно. Применение цифровой обработки сигнала еще больше сглаживает этот недостаток.

SECAM - это сокр. от фр. Séquentiel couleur avec mémoire, позднее Séquentiel couleur à mémoire - последовательный цвет с памятью - система аналогового цветного телевидения, впервые примененная во Франции. Исторически она является первым европейским стандартом цветного телевидения.

Сигнал цветности в стандарте SECAM передается в частотной модуляции (ЧМ), по одной цветовой составляющей в одной телевизионной строке, поочередно. В качестве недостающих строк используют предыдущий сигнал R-Y или B-Y соответственно, получая его из памяти (в аналоговых телевизионных приемниках для этого используется линия задержки). Таким образом, объективно, цветное телевизионное изображение в стандарте SECAM имеет в два раза меньшее разрешение по вертикали, чем монохромное изображение. Субъективно, в силу большей чувствительности глаза к яркостной составляющей, на среднестатистических картинках такое ухудшение почти не заметно. Применение цифровой обработки сигнала еще больше сглаживает этот недостаток.

В шутку принято расшифровывать аббревиатуру SECAM как "System Essentially Contrary to AMerican" (система, существенно противоположная американской).

Кстати видеокассеты с маркировкой NTSC по качеству и продолжительности записи не соответствуют системе PAL.

Публикация: video-minidv.blogspot.com

 Рекомендуем интересные статьи раздела Искусство видео:

▪ Регулировка диафрагмы

▪ Запись спутникового ТВ с минимальными затратами

▪ Профессиональное свадебное фото. Вопросы и ответы

Смотрите другие статьи раздела Искусство видео.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Кислотность океана разрушает зубы акул 03.10.2025

Мировые океаны выполняют важнейшую функцию - они поглощают около трети углекислого газа, выбрасываемого в атмосферу. Это помогает замедлять темпы глобального потепления, но имеет и обратную сторону. Растворяясь в воде, CO2 образует угольную кислоту, которая повышает концентрацию водородных ионов и приводит к снижению pH. Вода становится более кислой, а последствия этого процесса уже заметны для морских экосистем. Средний показатель кислотности океана сейчас равен примерно 8,1, тогда как еще недавно за условную норму брали значение 8,2. По прогнозам, к 2300 году уровень может упасть до 7,3 - это сделает океан почти в десять раз кислее нынешнего состояния. Для обитателей морей подобные изменения означают не просто сдвиг химического равновесия, а реальную угрозу физиологическим процессам, начиная от формирования раковин у моллюсков и заканчивая охотничьим поведением акул. Чтобы выяснить, как именно кислотная среда отражается на зубах акул, группа немецких исследователей провела эксп ...>>

Почтовый космический корабль Arc 03.10.2025

Космические технологии становятся частью инфраструктуры, способной повлиять на логистику, медицину и даже военную сферу. Идея использовать орбиту как глобальный склад для срочных поставок звучала еще недавно как научная фантастика, но стартап Inversion пытается превратить ее в практическое решение. Компания Inversion появилась в начале 2021 года благодаря Джастину Фиаскетти и Остину Бриггсу, которые на тот момент были студентами Бостонского университета. Их замысел состоял в том, чтобы сделать возможной доставку грузов не только через спутниковые сети данных, но и в буквальном смысле - физических предметов. В основе лежит простая мысль: если космос обеспечивает доступ к любой точке Земли, то и грузы должны перемещаться тем же маршрутом. Уже за три года работы команда из 25 специалистов успела построить демонстрационный аппарат "Ray". Его запуск состоялся в рамках миссии SpaceX Transporter-12. Устройство весом 90 килограммов проверяло ключевые технологии Inversion, включая двухком ...>>

Лазерное обогащение урана 02.10.2025

Ядерная энергия остается одним из ключевых источников стабильного электричества, особенно для стран с растущими потребностями в энергоснабжении. Однако обеспечение бесперебойных поставок топлива для атомных станций требует современных технологий обогащения урана, которые одновременно эффективны и безопасны. Американская компания Global Laser Enrichment (GLE) делает значительный шаг в этом направлении, завершив масштабное тестирование лазерной технологии обогащения урана. Демонстрационная программа была проведена на объекте в Уилмингтоне, Северная Каролина. Тестирование технологии SILEX (Separation of Isotopes by Laser EXcitation), разработанной австралийской Silex Systems, стартовало в мае 2025 года и продлится до конца года. В ходе экспериментов компания планирует получить сотни фунтов низкообогащенного урана (LEU), который может быть использован в качестве топлива для атомных электростанций. GLE была создана в 2007 году для коммерциализации лазерных методов обогащения урана в С ...>>

Случайная новость из Архива

Плазменное зеркало 10.01.2023

Впервые в истории науки ученые-физики из лаборатории LOA (Laboratoire d'Optique Appliquee), Франция, создали так называемое релятивистское плазменное зеркало, область, индуцированную лазерным светом, внутри которой свободные электроны плазмы перемещаются практически со скоростью света. И самое примечательное в этом случае то, что это плазменное зеркало "обновляется" с достаточно большой скоростью - около тысячи раз в секунду.

Когда интенсивный импульс лазерного света ионизирует поверхность материальной цели, это создает настолько плотное облако плазмы, что все это становится непроницаемым для света даже в том случае, если цель была раньше абсолютно прозрачна. Лазерный свет просто отражается от такого плазменного зеркала. Но, во время такого отражения возникает процесс, называемый поверхностной генерацией высших гармоник (SHHG), который "уплотняет" импульсы лазерного света, делая их еще более короткими и интенсивными, что интересует некоторые области науки и техники.

Однако, "хрупкая природа" SHHG-процесса определяет ряд жестких требований к параметрам лазера, таким, как пространственно-временное качество импульса и временный контраст, а также огромная пиковая мощность, которая должна измеряться тераватами, т.е. тысячами гигаватт. И это является причиной, по которой все предыдущие эксперименты в данном направлении проводились с низкой (менее 10 раз в секунду) частотой генерации-обновления плазменного зеркала.

Для этого французские ученые разработали новый лазер тераватного класса, способный генерировать импульсы, продолжительностью менее 4 фемтосекунд, тысячи раз в секунду. При этом все остальные параметры лазера также отвечают требованиям SHHG-процесса. Более того, ученые реализовали новую технологию, в которой для создания или поддержания плазменного зеркала используются два импульса. Первый импульс создает плазменное облако и способствует его расширению. С небольшой задержкой следует основной импульс света, позволяющий управлять градиентом плотности плазмы, определяющий многие параметры плазменного зеркала.

На последующих этапах своих исследований французские ученые планируют заняться проблемой перефокусировки излучения, отраженного от плазменного зеркала, что позволит получить световые импульсы продолжительностью меньше фемтосекунды с рекордно высоким уровнем интенсивности (яркости).

Другие интересные новости:

▪ Фотоэлектрическое стекло в жилом доме

▪ SONY выпустит телевизор с зумом

▪ Миниатюрные датчики силы Honeywell FMA

▪ Антикварки и вращение протона

▪ У людей память лучше работает в темноте

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Радиоэлектроника и электротехника. Подборка статей

▪ статья Разумное, доброе, вечное. Крылатое выражение

▪ статья Какое литературное произведение ошибочно приписывают Хемингуэю? Подробный ответ

▪ статья Свинорой пальчатый. Легенды, выращивание, способы применения

▪ статья Усилитель на микросхеме TDA2005, 2х10 ватт. Энциклопедия радиоэлектроники и электротехники

▪ статья Манхэттенские чудеса. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025