Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


УКВ ЧМ приемники с ФАПЧ. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Радиоприем

Комментарии к статье Комментарии к статье

Вниманию радиолюбителей предлагается несколько простых УКВ ЧМ приемников прямого преобразования с фазовой автоподстройкой частоты (ФАПЧ), реализуемой путем непосредственной синхронизации частоты гетеродина принимаемым сигналом [1].

Во всех конструкциях используется радиоприемное устройство, схема которого показана на рис. 1. Это преобразователь частоты с совмещенным гетеродином, выполняющий одновременно и функции синхронного детектора. Входной контур L1C2 настроен на частоту принимаемого сигнала, а контур гетеродина L2C6 - па частоту, равную ее половине. Преобразование происходит на второй гармонике гетеродина, поэтому промежуточная частота лежит в звуковом диапазоне. Функции управления частотой гетеродина выполняет сам транзистор VT1, выходная проводимость которого (она шунтирует контур L2C6) зависит от коллекторного тока, а значит, от выходного сигнала приемника.

УКВ ЧМ приемники с ФАПЧ
Рис. 1

Как гетеродин, транзистор VT1 включен по схеме ОБ, а как преобразователь частоты - по схеме ОЭ. Входной сигнал поступает на базу транзистора с широкополосного контура L1C2, настроенного на среднюю (70МГц) частоту принимаемого диапазона. Гетеродин перестраивается в диапазоне частот 32,9...36,5 МГц, так что частота его второй гармоники лежит в границах радиовещательного УКВ диапазона (65,8...73 МГц).

Эффективность работы приемника зависит от уровня второй гармоники колебаний гетеродина в коллекторном токе транзистора VT1. С целью повышения амплитуды этой составляющей емкость конденсатора положительной обратной связи С7 выбрана в 2...3 раза большей, чем это требуется для генерации на основной частоте.

Как синхронный детектор, транзистор VT1 включен по схеме ОБ. Он обеспечивает усиление сигнала звуковой (промежуточной) частоты, примерно равное отношению сопротивлений резисторов R2/R3. Цепь R2C3 блокирует гетеродин по радиочастоте и является нагрузкой синхронного детектора. Постоянная времени этой цепи позволяет пропустить всю полосу частот, занимаемую комплексным стерсосигналом (КСС). При приеме только монофонических передач емкость конденсатора С3 можно увеличить до получения стандартного значения постоянной времени 50 мкс. Напряжение на выходе приемника равно 10...30 мВ (этого достаточно, чтобы слушать радиопередачи на телефоны, включенные вместо резистора R2) и не зависит от уровня сигнала принимаемой радиостанции.

Описанный приемник по чувствительности не уступает сверхрегенеративному, но в отличие от него не "шумит" в отсутствие сигнала. При настройке гетеродина на частоту, вдвое меньшую частоты радиостанции, происходит захват, сопровождаемый щелчком, после чего в некоторой полосе удержания приемник "следит" за частотой принимаемого сигнала, осуществляя его синхронное детектирование. ФАПЧ и хорошая развязка входного и гетеродинного контуров (вследствие большой разницы в частотах их настройки) обусловили незначительное излучение в антенну и позволили отказаться от усилителя радиочастоты. Недостаток приемника - чрезмерное расширение полосы удержания при сильных сигналах и их прямое детектирование, однако это в той или иной мере свойственно всем ЧМ приемникам прямого преобразования с ФАПЧ.

В приемнике можно использовать и кремниевые транзисторы (например. КТ315В). Катушки L1, L2 - бескаркасные (внутренний диаметр 5 мм, шаг намотки 1 мм) и содержат соответственно 6 (с отводом от середины) и 20 витков провода ПЭВ-2 0,56.

Принципиальная схема карманного радиоприемника, обеспечивающего громкоговорящий прием, показана на рис. 2. Прием ведется на рамочную антенну WA2, настроенную конденсатором С2 на середину радиовещательного УКВ диапазона. Катушка L1 служит для связи антенны с приемным устройством, которое собрано на одном из транзисторов микросборки DA1 и перестраивается по диапазону конденсатором С8. Предварительный усилитель ЗЧ выполнен на другом транзисторе микросборки, оконечный - на транзисторах VT1-VT3. Выходная мощность усилителя на нагрузке сопротивлением 8 Ом (динамическая головка 0,25ГД-10) при питании от двух элементов А332 (3 В) - 50 мВт. При приеме слабых сигналов рекомендуется использовать внешнюю антенну WA1, подключаемую через разъем X1.

УКВ ЧМ приемники с ФАПЧ
Рис.2 (нажмите для увеличения)

Приемник можно собрать в любом подходящем по размерам пластмассовом корпусе. Рамочную антенну (один виток изолированного обмоточного или монтажного провода диаметром 0,3... 0,5 мм) укладывают по его периметру и закрепляют клеем. Ориентировочные размеры рамки - 100Х65 мм. Катушка связи L1 -- бескаркасная (внутренний диаметр - 5, шаг намотки - 1 мм) и содержит 2...4 витка. Катушка L2 может быть и такой же, как в радиоприемном устройстве по схеме на рис. 1. Однако во избежание микрофонного эффекта, который может возникнуть из-за акустической связи между чей и динамической головкой ВА1, ее лучше намотать виток к витку на унифицированном каркасе от коротковолновой катушки переносного радиоприемника (например, марки "Океан") с ферритовым подстроечником. В этом случае она должна содержать 9 витков провода ПЭВ-2 0,27. Конденсатором настройки может служить подстроечный конденсатор с воздушным диэлектриком.

Налаживание начинают с проверки режимов транзисторов. Напряжение на эмиттерах транзисторов VT2, VT3, равное половине питающего, устанавливают подбором резистора R11. Далее, замкнув накоротко контур гетеродина L2C6 и подав на эмиттер транзистора DA1.1 сигнал ЗЧ в несколько милливольт. убеждаются в его прохождении через весь тракт приемника. Режим гетеродина регулируют подбором резистора R1, уровень второй гармоники - конденсатора С7. Границы диапазона устанавливают изменением индуктивности катушки L2. Входной контур настраивают конденсатором С2, ориентируясь на максимальную полосу удержания сигналов принимаемых радиостанций.

На рис. 3 приведена принципиальная схема простого стереофонического УКВ ЧМ приемника. Для получения максимальной чувствительности в цепь положительной обратной связи каскада на транзисторе DA1.1 включен последовательный колебательный контур L3C7, настроенный на середину УКВ диапазона. По диапазону приемник перестраивают вариометром L2. Постоянная времени цепи R2C3 позволяет пропустить полосу частот, занимаемую комплексным стереосигналом, со спадом на частоте 46,25 кГц не более 3 дБ. На транзисторе DA1.2 собран усилитель-восстановитель поднесущей частоты 31,25 кГц. Он нагружен настроенным на эту частоту контуром L4С8, включенным последовательно с резистором R5, Резонансное сопротивление этого контура выбрани таким, что при его полном включении обеспечивается уровень восстановления поднесущей часто ты 14...17 дБ. (Как следует из [2], добротность контура восстановителя поднесущей частоты может отличаться от стандартной. Это не приводит к нелинейным искажениям при детектировании, уменьшение же переходного затухания па частотах ниже 300 Гц на стереоэффект практически не влияет).

УКВ ЧМ приемники с ФАПЧ
Рис.3 (нажмите для увеличения)

Буферный каскад на транзисторе VT1 связан с предыдущим непосредственно. Он имеет малый коэффициент передачи по напряжению (около двух), высокое входное сопротивление и не шунтирует цепь восстановления поднесущей частоты.

С коллектора транзистора VT1 полярно-модулированиые колебания через регулятор громкости R8 поступают на полярный детектор, выполненный на диодах VD1, VD2 С целью упрощения конструкции регулятор громкости включен перед детектором. Элементы L5 и С17 обеспечивают тонкомпенсацию соответственно на низших и высших звуковых частотах. Полярный детектор нагружен цепями R9C11 и R10C12. компенсирующими предыскажения исходных стереосигналов. При приеме монофонических передач полярный детектор замыкают накоротко переключателем SA1.

Стереофонический усилитель ЗЧ собран на транзисторах VT2- VT5, Выходной каскад работает в режиме А. Выходная мощность усилителя на нагрузке сопротивлением 8 Ом - 1...2 мВт, потребляемый ток - 7...8 мА. Усилитель может работать и на стереотелефоны сопротивлением 8...100 Ом.

Конструкция вариометра показана на рис. 4,а. Его корпус 1 выточен из фторопласта, внутри нарезана резьба М5. Крепежный хомутик 2 выполнен из медного провода диаметром 0,5 мм, шпилька-подстроечник 3 - из латуни. Ручка настройки 4 - любая готовая или самодельная. Цифрой 5 обозначен корпус приемника, 6 - монтажная плата.

УКВ ЧМ приемники с ФАПЧ
Рис.4

Катушка вариометра L2 содержит 16 витков провода ПЭВ-2 0.56, катушки L1 и L3 (бескаркасные, внутренний диаметр 5, шаг намотки 1 мм) - соответственно 6 (с отводом от середины) и 10 витков того же провода. Катушка L4 контура восстановления сигнала поднесущей частоты (155 витков) намотана проводом ПЭВ-2 0,2 на подвижном каркасе, размещенном на отрезке ферритового (М400НН) стержня диаметром 8 и длиной 20 мм. Обмотка дросселя L5 содержит 500 витков провода ПЭВ-2 0,1, магнитопровод - пермаллоевый из пластин Ш3Х6. Конденсатор С8 - КМ-5 с номинальным напряжением 50 В. При выборе конденсатора С3 следует учесть, что он должен обладать малой индуктивностью и малыми потерями в диапазоне принимаемых частот. Выключатель питания совмещен с разъемом Х2 (розетка ОНЦ-ВГ-4-5/16-р, вилка ОНЦ-ВГ-4-5/16-В), его функции выполняет перемычка, соединяющая контакты 1 и 4. Для устранения влияния рук на частоту гетеродина каскады на микросборке DA1 помещены в экран. В качестве антенны можно применить отрезок стальной проволоки длиной 20...30 см и диаметром 1...1.5 мм. Свободный конец проволоки следует согнуть, придав ему вид кольца.

В приемник можно ввести электронную настройку (рис. 4, б). В этом случае его настраивают переменным резистором R18. с движка которого поступает напряжение смещения на варикап VD3. Резистор подключают непосредственно к источнику питания приемника. При напряжении 1,5 В удается перекрыть примерно половину диапазона. Вторую половину можно перекрыть, подав на варикап прямое смещение (в левом - по схеме - положении переключателя SA2). При использовании устройства с приемником по схеме на рис. 2 питающее напряжение следует подавать через развязывающий фильтр R19C20, а переключатель SA2 исключить.

Налаживание приемника начинают с установки режима работы выходных каскадов подбором резисторов R11, R14 (до получения коллекторного тока покоя транзисторов VT5, VT6 в пределах 5...8 мА). Далее проверяют АЧХ стереодекодера. Для этого, замкнув накоротко катушку L2, подают на эмиттер транзистора DA1.1 сигнал ЗЧ напряжением в несколько милливольт. Выходной сигнал снимают с резистора R8, предварительно установив его движок в крайнее левое (по схеме) положение, а выключатель SA1 - в положение, показанное на схеме. Спад АЧХ на частоте 46,25 кГц не должен превышать 3 дБ (при необходимости этого добиваются подбором конденсатора С3), а ее подъем на частоте 31,25 кГц (при настроенном контуре L4C8) должен быть не менее 14 дБ (5 раз).

Можно настроить стереодекодер и по принимаемому стереосигналу. Для этого параллельно контактам выключателя SA1 подсоединяют высокоомный милливольтметр и перемещением катушки L4 по ферритовому стержню настраивают контур восстановления под-несущей частоты по максимуму постоянной составляющей на выходе полярного детектора. При настроенном контуре она должна составлять 0.25...0,3 В, а при расстроенном или замкнутом накоротко - 0,05 В. Если необходимо, подбирают резистор R7, добиваясь максимального динамического диапазона каскада на транзисторе VT2.

На рис. 5 приведена схема УКВ приставки к промышленному транзисторному приемнику "ВЭФ-202" [3] (в скобках указаны позиционные обозначения его деталей по заводской схеме). Приставку монтируют в барабанном переключателе на планке диапазона 52.. 75 м. Для перестройки по диапазону используют одну из секций конденсатора переменной емкости С3, прием ведут на телескопическую антенну. Сигнал с выхода приставки подают на вход усилителя ЗЧ через корпус барабанного переключателя. Для этого к выходу приставки припаивают гибкий провод, второй конец которого (согнутый в виде колечка) с помощью крепежного винта планки подсоединяют к корпусу переключателя. Снимают сигнал с любой неподвижной части переключателя (например, с одного из крепежных винтов) и подают в точку соединения резистора R29 и конденсатора С71 приемника.

УКВ ЧМ приемники с ФАПЧ
Рис.5 (нажмите для увеличения)

Катушки L1 (5 витков с отводом от 2-го) и L2 (9 витков) наматывают виток к витку проводом ПЭВ-2 0,31 на каркасах от катушек диапазона 52- 75 м.

Перед монтажом планку переключателя полностью демонтируют. Паяльником убирают ненужные контакты и устанавливают недостающие. Рядом с антенной катушкой размещают подстроечный конденсатор С2. Микросборку устанавливают в имеющееся в планке отверстие для третьей катушки.

При изготовлении приставки в виде автономного блока к любому другому приемнику питание следует подавать через развязывающий фильтр R7C10. Напряжение питания приставки должно составлять 3,5...4,5 В.

Литература

1. Поляков В. Радиовещательные ЧМ приемники с фазовой автоподстройкой.- М.: Радио и связь, 1983.
2. Кононович Л. Стереофоническое вещание - М.: Связь, 1974.
3. Белов И. Ф., Дрызго Е. В. Справочник по транзисторным радиоприемникам. радиолам, электрофонам. Часть I. Переносные приемники и радиолы. - М.: Советское радио. 1976.

Автор: А.Захаров, г. Краснодар; Публикация: Н. Большаков, rf.atnn.ru

Смотрите другие статьи раздела Радиоприем.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Оптимальная продолжительность сна 12.11.2025

Сон играет ключевую роль в поддержании здоровья, когнитивных функций и общего самочувствия. Несмотря на широко распространенный стереотип о восьмичасовом сне, последние исследования показывают, что оптимальная продолжительность сна для большинства здоровых взрослых ближе к семи часам. Эволюционный биолог из Гарварда, Дэниел Э. Либерман, утверждает, что традиционная норма восьми часов сна - это скорее культурное наследие индустриальной эпохи, чем биологическая необходимость. По его словам, полевые исследования, проведенные в сообществах, не использующих электричество, показывают, что средняя продолжительность сна составляет 6-7 часов, что значительно отличается от общепринятого стандарта. Современные эпидемиологические данные подтверждают этот взгляд. Исследования выявили так называемую "U-образную кривую" зависимости между продолжительностью сна и рисками для здоровья. Минимальные показатели заболеваемости и смертности наблюдаются именно у людей, спящих около семи часов в сутки. ...>>

Дефицит кислорода усиливает выброс закиси азота 12.11.2025

Парниковые газы играют ключевую роль в изменении климата, а закись азота (N2O) - один из наиболее опасных среди них. Этот газ не только втрое сильнее углекислого газа в удержании тепла, но и разрушает озоновый слой. Недавнее исследование американских ученых показало, что микробы в зонах с низким содержанием кислорода активно производят N2O, усиливая глобальные климатические риски. Команда из Университета Пенсильвании изучала прибрежные воды у Сан-Диего и провела наблюдения на глубинах от 40 до 120 метров в Восточной тропической северной части Тихого океана - одной из крупнейших зон дефицита кислорода. Исследователи сосредоточились на том, как морские микроорганизмы превращают нитраты в закись азота. В ходе работы выяснилось, что существует два пути образования N2O. Один путь начинается с нитрата, другой - с нитрита. На первый взгляд более короткий путь должен быть эффективнее, однако микробы, использующие нитрат, продуцируют больше газа, поскольку этот "сырьевой" источник более д ...>>

Омега-3 помогают молодым кораллам выживать 11.11.2025

Сохранение коралловых рифов становится все более актуальной задачей в условиях глобального изменения климата. Молодые кораллы особенно уязвимы на ранних стадиях развития, когда стрессовые условия и нехватка питательных веществ могут привести к высокой смертности. Недавнее исследование ученых из Технологического университета Сиднея показывает, что специальные пищевые добавки способны существенно повысить выживаемость личинок кораллов. В ходе работы исследователи разработали особый состав "детского питания" для коралловых личинок. В него вошли масла, богатые омега-3 жирными кислотами, а также важные стерины, необходимые для формирования клеточных мембран. Личинки, получавшие эти добавки, развивались быстрее, становились крепче и демонстрировали более высокую устойчивость к стрессовым факторам. Особое внимание ученые уделили липидам. Анализ показал, что личинки активно усваивают эти вещества, что напрямую влияет на их жизнеспособность. Стерины, содержащиеся в корме, повышают устойчи ...>>

Случайная новость из Архива

Цитрусовые волокна как экологичная альтернатива яйцам и маслу 19.08.2024

В современном мире, где все больше людей отдают предпочтение растительной пище, вопрос замены животного белка и жиров становится особенно актуальным. Ученые и пищевые технологи постоянно ищут новые решения, способные не только удовлетворить растущий спрос на веганские и вегетарианские продукты, но и сделать их более здоровыми и экологичными. Одной из таких инноваций стали цитрусовые волокна, разработанные компанией Ingredion.

Компания Ingredion, мировой лидер в производстве ингредиентов для пищевой промышленности, представила два новых продукта на основе цитрусовых волокон. Эти инновационные ингредиенты способны эффективно заменить такие традиционные компоненты, как растительное масло и яйца, в широком спектре продуктов питания.

В отличие от многих других растительных альтернатив, цитрусовые волокна от Ingredion обладают рядом уникальных преимуществ. Они позволяют значительно сократить количество искусственных добавок и улучшить текстуру готовых продуктов. Как отмечает Юлика Баседа, глобальный менеджер R&D программы Ingredion, "веганские продукты часто содержат большое количество добавок, имитирующих свойства яиц, что усложняет состав продукта". Цитрусовые волокна же являются натуральным ингредиентом и позволяют создавать продукты с более чистым составом.

Цитрусовые волокна выполняют в продуктах несколько важных функций. Они действуют как эмульгатор, связывая воду и жир, что обеспечивает необходимую текстуру и консистенцию. Кроме того, они способны заменить синтетические связующие вещества, такие как метилцеллюлоза, которые часто используются в производстве растительного мяса. Благодаря своим свойствам, цитрусовые волокна помогают создавать продукты с более натуральным составом и улучшенными органолептическими характеристиками.

Еще одним важным преимуществом цитрусовых волокон является их экологичность. Они производятся из переработанной кожуры цитрусовых, что позволяет сократить пищевые отходы и снизить нагрузку на окружающую среду. Продукты на основе цитрусовых волокон маркируются как "изготовлен из натуральных источников", "на основе фруктов" и "источник пищевых волокон", что подчеркивает их экологическую чистоту.

В настоящее время цитрусовые волокна от Ingredion уже доступны на рынках Европы, Ближнего Востока и Африки. В ближайшее время компания планирует расширить географию поставок и сделать свои продукты доступными в США, Канаде и Латинской Америке.

Разработка новых ингредиентов на основе цитрусовых волокон является значительным шагом вперед в области пищевых технологий. Цитрусовые волокна открывают широкие возможности для создания более здоровых, экологичных и вкусных растительных продуктов. Их способность эффективно заменять традиционные ингредиенты, такие как яйца и растительное масло, делает их незаменимым инструментом для производителей продуктов питания, стремящихся удовлетворить растущий спрос на альтернативные источники белка.

Другие интересные новости:

▪ Коммутаторы MEMS от Analog Devices вместо реле

▪ BLE модуль для интернета вещей ST Microelectronics SPBTLE-1S

▪ Смартфон LG Flex

▪ Биотопливо: больше и дешевле

▪ Впервые клонированы обезьян

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Электронные справочники. Подборка статей

▪ статья Теория химического строения. История и суть научного открытия

▪ статья Почему цефеиды называют маяками Вселенной? Подробный ответ

▪ статья Фикус каучуконосный. Легенды, выращивание, способы применения

▪ статья Искусственное окрашивание мрамора. Простые рецепты и советы

▪ статья Транзисторы полевые. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025