Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


ЭНЦИКЛОПЕДИЯ РАДИОЭЛЕКТРОНИКИ И ЭЛЕКТРОТЕХНИКИ
Бесплатная библиотека / Электрику

Электронные пускорегулирующие аппараты. Современный электронный балласт на микросхеме IR2520. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Пускорегулирующие аппараты люминесцентных ламп

Комментарии к статье Комментарии к статье

На данный момент стала доступна сравнительно недорогая специализированная микросхема IR2520D. Имея всего восемь выводов, она не только поддерживает в заданных пределах ток и напряжение на лампе при прогреве, поджиге и в рабочем режиме, но и обладает рядом защитных функций. Схема ЭПРА с использованием IR2520D изображена на рис. 3.28.

Данная схема с успехом была спроектирована с помощью последней версии программы Ballast Designer, а использована для замены вышедшего из строя электронного балласта KЛЛ мощностью 26 Вт. Внутреннюю структурную блок-схему можно узнать, обратившись к фирменному даташиту.

Современный электронный балласт на микросхеме IR2520

Диодный мост VD1 выпрямляет переменное сетевое напряжение. Конденсатор С2 - сглаживающий. Первичный бросок зарядного тока конденсатора С2 ограничивает резистор R1, а импульсные помехи ослабляет фильтр L1C1.

Сразу же после включения начинается зарядка конденсатора С4 током, текущим через резисторы R2 и R4. Как только напряжение на этом конденсаторе и между выводами 1 и 2 микросхемы DA1 достигнет 12,6 В, микросхема начнет генерировать импульсы, управляющие полевыми транзисторами VT1 и VT2. Зарядка конденсатора С4 будет продолжаться, пока напряжение на нем не достигнет 15,6 В - напряжения стабилизации встроенного в микросхему стабилитрона. Так как резисторы R2 и R4 обеспечивают ток, достаточный лишь для запуска микросхемы, в рабочем режиме ее питает выпрямитель выходного напряжения на диодах VD2, VD3 и конденсаторе С5.

Частота генерируемых импульсов зависит от сопротивления резистора R3 и от напряжения на выводе 4 микросхемы. Сразу после включения это напряжение равно нулю (конденсатор C3 разряжен), частота максимальна и равна 118,5 кГц (точка 1 на рис. 3.29). Резонансная частота контура L2C7 гораздо ниже (65,3 кГц), поэтому амплитуда переменного напряжения на не горящей пока лампе EL1 невелика. Ток высокой частоты течет через ее нити накаливания, прогревая их.

По мере зарядки конденсатора C3 током, источником которого служит сама микросхема, частота генерируемых импульсов снижается (участок 1-2 на графике, рис. 3.29), напряжение на лампе и ток ее накала растут. Приблизительно через 1 с, когда напряжение на конденсаторе C3 достигнет 4,8 В, частота станет равной 75,5 кГц, а напряжение на лампе - 450 В. Этого напряжение достаточно для поджига, в результате в лампе возникнет газовый разряд, и она вспыхнет.

Современный электронный балласт на микросхеме IR2520
Рис. 3.29. График, поясняющий работу схемы

Так как напряжение горения лампы гораздо ниже напряжения ее пробоя, рабочая точка на графике (рис. 3.29) скачком переместится из точки 2 (соответствует погашенной лампе и высокой добротности колебательного контура L2C7) в точку 2Г (лампа горит, добротность зашунтированного ее разрядным промежутком контура резко снизилась). Зарядка конденсатора С3 будет продолжаться, пока напряжение на выводе 4 микросхемы не достигнет 6 В, что соответствует частоте подаваемого на лампу напряжения 47,4 кГц. Это номинальный режим горения лампы (точка 3 на графике, рис. 3.29).

Встроенный в микросхему R2520D узел контроля измеряет пропорциональное току, текущему через полевой транзистор VT2, падение напряжения на сопротивлении его открытого канала сток-исток. Если транзистор открывается, когда мгновенное значение тока нагрузки равно нулю, напряжение на выводе 4 микросхемы и зависящая от него частота колебаний остаются неизменными. Но в результате старения элементов или по другим причинам резонансная частота нагрузки может измениться. Следствием этого станет ненулевое значение тока, текущего через транзистор VT2 в первый момент после его открывания.

Обнаружив это, узел управления микросхемы начнет уменьшать напряжение на выводе 4, повышая этим частоту колебаний. Если для достижения нуля окажется недостаточно снижения напряжения на выводе 4 даже до 0,85 В (такое может случиться при нарушении контакта в держателе лампы или перегорании ее нити накала), микросхема перейдет в аварийный режим, закрыв транзисторы VT1 и VT2, разрядив конденсатор C3 и уменьшив потребляемый ток до 100 мкА. Для того чтобы выйти из этого режима, придется уменьшить напряжение питания (между выводами 1 и 2 микросхемы) до значения, меньшего 10 В, а затем вновь поднять его выше 12,6 В.

Если по достижении точки 2 (см. рис. 3.29) зажигания лампы не произошло в связи с ее неисправностью или отсутствием, уменьшение частоты колебаний продолжится, напряжение на конденсаторе С7 превысит допустимое значение, и он может быть пробит. Возможно и насыщение магнитопровода дросселя L2.

Установлено, что в таких условиях растет пик-фактор (отношение амплитудного значения к среднему) тока, текущего через открытый транзистор VT2. Используя сопротивление открытого канала этого транзистора как датчик тока, узел контроля микросхемы измеряет пик-фактор. При его усредненном за 10-20 периодов колебаний значении более пяти микросхема перейдет в описанный ранее аварийный режим.

Из других особенностей микросхемы R2520D следует отметить наличие "бутстрепного" полевого транзистора, а не диода между выводами 8 и 1. Открывает и закрывает этот транзистор сигнал, вырабатываемый внутри микросхемы. Это обеспечивает высокую скорость переключения и малые потери энергии на сопротивлении открытого канала транзистора.

Во вновь изготавливаемом ЭПРА использован в качестве L2 дроссель от неисправного ЭПРА KЛЛ, индуктивность которого была измерена и оказалась равной 2,5 мГн. Для того, чтобы уменьшить ее до требуемых 1,8 мГн, пришлось увеличить немагнитный зазор в магнитопроводе дросселя. Для правильного расчет дросселя и других элементов при использовании различных KЛЛ следует пользоваться программой автоматического проектирования Ballast Designer последней доступной версией.

Как выяснилось, каркас с обмоткой зафиксирован на магнитопроводе электроизоляционным лаком. Чтобы размягчить лак, дроссель был примерно на полчаса помещен выводами вниз на дно закрытого сосуда, в который слоем глубиной 3-4 мм был налит ацетон. После этого осторожным покачиванием удалось ослабить ранее прочные соединения. Затем без всякого нагревания две половины магнитопровода были извлечены из каркаса с обмоткой, для этого потребовалось лишь удалить скреплявшую их липкую ленту.

Длина воздушного зазора на центральном стержне магнитопровода была равна 1 мм. Чтобы без перемотки снизить индуктивность дросселя, в стыки боковых стержней половин магнитопровода пришлось вставить прокладки из немагнитного материала толщиной по 10,25 мм. Измеренная после сборки индуктивность дросселя - 1,78 мГн. Как доказали испытания и последующая эксплуатация ЭПРА, переделка оказалась успешной.

При отсутствии измерителя индуктивности можно с помощью подходящих генератора и вольтметра (или осциллографа) проверить резонансную частоту контура L2C7. Она должна быть близкой к 65 кГц.

Все элементы устройства смонтированы на односторонней печатной плате, показанной на рис. 3.30.

Для микросхемы DA1 на плате можно предусмотреть 18-контактную панель. Выводы оксидного конденсатора С2 не обрезают, а изолируют полихлорвиниловой трубкой на всю длину и впаивают их концы в плату. Этот конденсатор устанавливают так, чтобы он, опираясь на транзистор VT1 и дроссель L2, возвышался над платой, а при сборке лампы вошел в ее пустотелый цоколь.

Дроссель L1 - магнитопровод "гантель" наружным диаметром 7-10 мм, заполненный проводом ПЭВ-2 диаметром 0,21 мм. Он изолирован термоусадочной трубкой. Диодный мост VD1 в исполнении для поверхностного монтажа установлен на стороне печатных проводников платы. Его можно заменить обычным в корпусе DP или отдельными диодами с обратным напряжением не менее 400 Вис прямым током 1 А. Но для этого печатную плату потребуется переделать.

Современный электронный балласт на микросхеме IR2520
Рис. 3.30. Печатная плата

Резистор R1 - KNP-50. Конденсаторы С1 и С8 - К73-17 на напряжение 630 В, C4 - TDC (танталовый с радиальными выводами), C5 и C7 - импортные дисковые керамические диаметром 7 мм с рабочим напряжением 2 кВ. К остальным резисторам и конденсаторам особых требований не предъявляется. Транзисторы установлены без теплоотводов.

Совет. После монтажа элементов плату рекомендуется покрыть несколькими слоями электроизоляционного лака.

Включив ЭПРА с лампой и убедившись, что он работает, можно определить потребляемую лампой мощность. Для этого последовательно в цепь лампы потребуется временно включить токоизмерительный резистор сопротивлением 1 Ом. Если мощность не соответствует номинальной, ее можно изменить, подбирая резистор R3. С увеличением его сопротивления частота приложенного к лампе напряжения уменьшается, а мощность растет.

Автор: Косенко С.И.

Смотрите другие статьи раздела Пускорегулирующие аппараты люминесцентных ламп.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Использование Apple Vision Pro во время операций 16.03.2024

Медицинская команда больницы Кромвеля в Лондоне впервые применила Apple Vision Pro в ходе двух операций на позвоночнике. Это событие подтверждает потенциал гарнитуры в качестве медицинского инструмента, изменяющего подход к хирургической практике. Хотя сами врачи не использовали Vision Pro, операционная медсестра работала с виртуальной реальностью, используя очки во время подготовки и выполнения процедур. Гарнитура позволила просматривать виртуальные экраны в операционной, выбирать инструменты и следить за ходом операции. Программное обеспечение, разработанное компанией eXeX, специализирующейся на создании приложений на основе искусственного интеллекта для хирургии, существенно улучшило процесс оказания медицинской помощи пациентам. Использование Apple Vision Pro открывает новые возможности для разработки приложений в сфере здравоохранения, таких как клиническое образование, планирование операций, обучение и медицинская визуализация. Внедрение Apple Vision Pro в медицинскую пр ...>>

Хранение углерода в Северное море 16.03.2024

Министр энергетики Норвегии Терье Осланд объявил о запуске проекта Longship, нацеленного на создание центрального хранилища углекислого газа в Северном море. Этот амбициозный проект оценивается в $2,6 млрд и направлен на применение технологии CCS (углеродного захвата и хранения) для смягчения воздействия климатических изменений. Норвегия уже имеет опыт в области CCS благодаря успешным проектам Sleipner и Snohvit, и сейчас стремится увеличить объем углерода, запечатываемого под морским дном. План Longship предусматривает создание мощности по захвату и хранению 1,5 млн. тонн углерода ежегодно в течение 25 лет. Несмотря на позитивные перспективы, существуют опасения по поводу долгосрочных последствий такого хранения. Однако сторонники проекта утверждают, что морское хранение углерода имеет ряд преимуществ, включая минимальное воздействие на окружающую среду. Проект Longship осуществляется при участии компаний Equinor, Shell и TotalEnergies через совместное предприятие Northern Li ...>>

Выращены мини-органы из амниотической жидкости человека 15.03.2024

Международная команда ученых под руководством профессора Фань Сюлиня из Университета Чжэцзян разработала уникальный способ выращивания мини-органов из клеток, обнаруженных в амниотической жидкости человека. Этот значительный прорыв в медицине может привести к улучшению диагностики и лечения врожденных заболеваний. Органоиды, представляющие собой трехмерные клеточные структуры, имитирующие органы в меньшем масштабе, были выращены из клеток легких, почек и тонкого кишечника, найденных в амниотической жидкости. Этот метод открывает новые возможности для изучения различных состояний плода и может стать ключом к ранней диагностике и лечению врожденных дефектов. Хотя пока не проводились попытки использования этого метода в лечении, ученые надеются, что их исследования в будущем помогут бороться с серьезными врожденными заболеваниями, которые затрагивают миллионы новорожденных ежегодно. Этот прорыв может изменить практику медицинских вмешательств, позволяя диагностировать и лечить врожд ...>>

Случайная новость из Архива

Заработала крупнейшая в Европе солнечная станция 18.05.2023

В Турции в провинции Конья запустили в работу крупнейшую солнечную электростанцию в Европе "Карапинар". Она имеет мощность 1350 МВт и состоит из 3256038 солнечных панелей.

Площадь станции составляет 20 миллионов м2. Проект удалось реализовать при финансовой поддержке правительства Великобритании, ведь его стоимость составляет $1 миллиард.

"Карапинар" увеличит долю установленной мощности солнечной энергетики Турции на 20%. СЭС сможет ежегодно производить 3 млрд. кВт электроэнергии, то есть 1% от всего потребления электроэнергии в стране. Станция сможет обеспечить энергией около двух миллионов человек.

Солнечная станция также снизит выбросы на 2 миллиона тонн.

Другие интересные новости:

▪ Автомобили Ford научатся отслеживать свободные парковки

▪ Юньнаньский синдром

▪ Создан метод точного определения биологического возраста

▪ Программируемый процессор на базе молекул ДНК

▪ На далеких планетах найдена вода

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Крылатые слова, фразеологизмы. Подборка статей

▪ статья Чрезвычайные ситуации на радиационно опасных объектах. Основы безопасной жизнедеятельности

▪ статья Из чего состоит Солнце? Подробный ответ

▪ статья Машинист трелевочной машины. Типовая инструкция по охране труда

▪ статья Сельские мельницы и кустарные ветродвигатели. Энциклопедия радиоэлектроники и электротехники

▪ статья Ремонт и доработка зарядного устройства сотовых телефонов NOKIA. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:




Комментарии к статье:

Василий
Первое включение с др.на 1.23mH -cгорели полевики? лампа TLD-18. Второе включение с др. на 1.79mH -тишина,лампа TLD-30.


All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024