www.diagram.com.ua
www.diagram.com.ua
Русский: Русская версия English: English version
Translate it!
Поиск по сайту

+ Поиск по журналам
+ Поиск по статьям сайта
+ Поиск по схемам СССР
+ Поиск по Библиотеке

Бесплатная техническая библиотека:
Все статьи А-Я
Энциклопедия радиоэлектроники и электротехники
Новости науки и техники
Журналы, книги, сборники
Архив статей и поиск
Схемы, сервис-мануалы
Электронные справочники
Инструкции по эксплуатации
Голосования
Ваши истории из жизни
На досуге
Случайные статьи
Отзывы о сайте

Справочник:
Большая энциклопедия для детей и взрослых
Биографии великих ученых
Важнейшие научные открытия
Детская научная лаборатория
Должностные инструкции
Домашняя мастерская
Жизнь замечательных физиков
Заводские технологии на дому
Загадки, ребусы, вопросы с подвохом
Инструменты и механизмы для сельского хозяйства
Искусство аудио
Искусство видео
История техники, технологии, предметов вокруг нас
И тут появился изобретатель (ТРИЗ)
Конспекты лекций, шпаргалки
Крылатые слова, фразеологизмы
Личный транспорт: наземный, водный, воздушный
Любителям путешествовать - советы туристу
Моделирование
Нормативная документация по охране труда
Опыты по физике
Опыты по химии
Основы безопасной жизнедеятельности (ОБЖД)
Основы первой медицинской помощи (ОПМП)
Охрана труда
Радиоэлектроника и электротехника
Строителю, домашнему мастеру
Типовые инструкции по охране труда (ТОИ)
Чудеса природы
Шпионские штучки
Электрик в доме
Эффектные фокусы и их разгадки

Техническая документация:
Схемы и сервис-мануалы
Книги, журналы, сборники
Справочники
Параметры радиодеталей
Прошивки
Инструкции по эксплуатации
Энциклопедия радиоэлектроники и электротехники

Бесплатный архив статей
(150000 статей в Архиве)

Алфавитный указатель статей в книгах и журналах

Бонусы:
Ваши истории
Загадки для взрослых и детей
Знаете ли Вы, что...
Зрительные иллюзии
Веселые задачки
Каталог Вивасан
Палиндромы
Сборка кубика Рубика
Форумы
Карта сайта

ДИАГРАММА
© 2000-2020

Дизайн и поддержка:
Александр Кузнецов

Техническое обеспечение:
Михаил Булах

Программирование:
Данил Мончукин

Маркетинг:
Татьяна Анастасьева

Перевод:
Наталья Кузнецова

Контакты

При использовании материалов сайта обязательна ссылка на http://www.diagram.com.ua

сделано в Украине
сделано в Украине

Диаграмма. Бесплатная техническая библиотека

Бесплатная техническая библиотека Бесплатная техническая библиотека, Энциклопедия радиоэлектроники и электротехники

НОВОСТИ НАУКИ И ТЕХНИКИ, НОВИНКИ ЭЛЕКТРОНИКИ
Бесплатная техническая библиотека / Лента новостей

3D-графен 08.02.2014

Сюебин Ван (Xuebin Wang) и Йошио Бандо (Yoshio Bando) из Японского Международного центра наноархитектоники материалов (WPI-MANA) совместно с коллегами из Японии и Китая создали новый метод получения 3D-графена с использованием пузырьков, надуваемых в растворе полимера глюкозы. Полученный 3D-графен обладает устойчивостью и отличной проводимостью.

Пластинки графена - очень прочные, легкие и имею отличную проводимость. Теоретически макроскопические объемные графеновые сборки должны сохранять свойства наноразмерных графеновых чешуек. Однако в недавних попытках создания 3D-графена была получена слабая проводимость, вызванная плохим контактом между пластинками графена. Также проблемой была потеря прочности, а самоподдерживаемый 3D-графен все еще не был создан.

Вдохновленный древним кулинарным искусством "надутого сахара", Бандо и его команда доказали, что сжатая, когерентная природа соединившихся пузырьков окажет влияние на прочность и проводимость, если графен можно будет структурировать таким же способом. Ученые создали сироп из обычного сахара и хлорида аммония. Они нагревали сироп, получая полимер на основе глюкозы, называемый меланоидин, который затем надувался в пузыри с помощью газов, освобождаемым аммонием. Команда обнаружила, что наилучшее качество конечного продукта получается при балансе на этой стадии разложения аммония и полимеризации глюкозы.

По мере роста пузырьков оставшийся сироп стекает со стенок пузырьков, уходя из пересечений трех пузырьков. При дальнейшем нагревании, раскислении и дегидрировании меланоидин постепенно графитизируется, чтобы образовать "сжатый графен" - когерентную 3D-структуру, состоящую из графеновых оболочек, связанных структурой сжатого графена, который, соответственно, образуется из первоначальных стенок пузырьков и каркаса пересечений.

Пузырьковая структура обеспечивает свободное движение электронов через сеть, что означает, что графен полностью сохраняет проводимость. Кроме того, механическая прочность и упругость 3D-графена оказались исключительно высокими - команде удалось сжать его до 80% от его начального размера при очень малых потерях проводящих свойств или стабильности.

Развивая свое открытие, Бандо и его команда в своей лаборатории устойчиво получали сжатый 3D-графен граммовых объемов стоимостью 0,5 долл./грамм. Обладая низкой стоимостью и высокой масштабируемостью, новый метод может найти множество применений в технике и электронике. Полученный в большом количестве продукт был выборочно применен в высокоэффективном суперконденсаторе. Его максимальная плотность энергии стала наибольшей среди графеновых 3D-водных суперконденсаторов - 106 Вт/кг. Это открывает невероятные перспективы для быстрого развития электрического транспорта и авиации.

>> Следующая новость: 3-симочный смартфон Explay Atom 07.02.2014

<< Предыдущая новость: Электронный аналог кошачьих усов 08.02.2014

Последние новости науки и техники, новинки электроники:

Открыта самая маленькая черная дыра 24.02.2020

Ученые, возможно, обнаружили самую маленькую черную дыру из когда-либо открытых. Это стало возможным благодаря новой методике, которая объединяет несколько наборов данных. Исследователи полагают, что черная дыра примерно в 3,3 раза массивнее Солнца и находится в двойной системе J05215658, которая расположена на расстоянии около 10 000 световых лет от внешнего края диска Млечного пути. Хотя для подтверждения малой массы черной дыры требуются дополнительные исследования, существует вероятность тог ...>>

Ультразвуковой браслет для подавления микрофонов 24.02.2020

Исследователи из Чикагского университета создали экспериментальный браслет, в котором с помощью 24 динамиков генерируются помехи в ультразвуковом диапазоне частот для подавления большинства микрофонов независимо от их направленности. Гаджет использует нелинейные искажения встроенного усилителя для "утечки" ультразвукового шума в звуковой диапазон, исключая тем самым возможность записи разговора. Столь необычная конструкция браслета отнюдь не дань моде. Он не только генерирует всенаправленн ...>>

Дроны против коронавируса 23.02.2020

В Китае на борьбу с коронавирусом вывели дроны. Конечно, борьба в данном случае идет не напрямую с вирусом, просто дроны помогают выполнять определенную работу, связанную с вспышкой болезни. Во-первых, дроны с громкоговорителями летают над улицами, напоминая жителям о необходимости носить маски. И хотя маски предназначены в первую очередь для тех, кто уже заразился, носят их, конечно, все. Второй сценарий использования дронов еще интереснее. Дроны используются на некоторых дорожных пропуск ...>>

Охлаждение крыльев бабочек 23.02.2020

Чтобы взлететь, бабочке нужно в прямом смысле разогреться: если мышцы у нее будут недостаточно теплыми, они просто не смогут сокращаться с той скоростью, которая нужна для полета. Поэтому, если бабочка слишком сильно остыла - например, после холодной ночи - она выползает на солнце и греется. Но ведь греются у нее не только грудные мышцы, но и все тело, и крылья тоже, причем крылья нагреваются быстрее мышц. И может получиться так, что к тому времени, когда мышцы будут готовы взлететь, как надо, к ...>>

Рекорд скорости в сети 5G от Ericsson 22.02.2020

Компания Ericsson объявила о новом рекорде скорости передачи данных с помощью технологий 5G при использовании коммерческого оборудования. Специалистам удалось достигнуть скорости скачивания в 4,3 Гбит/с в сетях 5G при использовании фирменного оборудования, объединяющего 800 МГц спектра миллиметровых волн. По заявлению Ericsson, эта цифра больше всех предыдущих рекордов в среднем на 1 Гбит/с. Информация передавалась на тестовый смартфон, оборудованный 5G-модемом Qualcomm Snapdragon X55. "Эт ...>>

Случайная новость из Архива

Чем мельче, тем прочнее 01.01.2004

Свойства материалов на сверхмикроскопическом уровне зачастую оказываются иными, чем в макромире.

Кристаллы в слитке меди обычно имеют микронные размеры. Французские физики получили медь с кристалликами поперечником в несколько десятков нанометров (микрон - тысячная часть миллиметра, а нанометр - тысячная часть микрона).

Оказалось, что такая медь в три раза прочнее на разрыв, чем обычная. Как показали американские исследователи, микрошарики из кремния диаметром несколько десятков нанометров в четыре раза тверже, чем обычный кристаллический кремний. Они получены путем осаждения газообразного соединения кремния на подложке из сапфира.

По твердости шарики располагаются между сапфиром и алмазом. Чем они мельче, тем тверже.

Смотрите полный Архив новостей науки и техники, новинок электроники


Бесплатная техническая библиотека Бесплатная техническая документация для любителей и профессионалов