www.diagram.com.ua
www.diagram.com.ua
Русский: Русская версия English: English version
Translate it!
Поиск по сайту

+ Поиск по журналам
+ Поиск по статьям сайта
+ Поиск по схемам СССР
+ Поиск по Библиотеке

Бесплатная техническая библиотека:
Все статьи А-Я
Энциклопедия радиоэлектроники и электротехники
Новости науки и техники
Журналы, книги, сборники
Архив статей и поиск
Схемы, сервис-мануалы
Электронные справочники
Инструкции по эксплуатации
Голосования
Ваши истории из жизни
На досуге
Случайные статьи
Отзывы о сайте

Справочник:
Большая энциклопедия для детей и взрослых
Биографии великих ученых
Важнейшие научные открытия
Детская научная лаборатория
Должностные инструкции
Домашняя мастерская
Жизнь замечательных физиков
Заводские технологии на дому
Загадки, ребусы, вопросы с подвохом
Инструменты и механизмы для сельского хозяйства
Искусство аудио
Искусство видео
История техники, технологии, предметов вокруг нас
И тут появился изобретатель (ТРИЗ)
Конспекты лекций, шпаргалки
Крылатые слова, фразеологизмы
Личный транспорт: наземный, водный, воздушный
Любителям путешествовать - советы туристу
Моделирование
Нормативная документация по охране труда
Опыты по физике
Опыты по химии
Основы безопасной жизнедеятельности (ОБЖД)
Основы первой медицинской помощи (ОПМП)
Охрана труда
Радиоэлектроника и электротехника
Строителю, домашнему мастеру
Типовые инструкции по охране труда (ТОИ)
Чудеса природы
Шпионские штучки
Электрик в доме
Эффектные фокусы и их разгадки

Техническая документация:
Схемы и сервис-мануалы
Книги, журналы, сборники
Справочники
Параметры радиодеталей
Прошивки
Инструкции по эксплуатации
Энциклопедия радиоэлектроники и электротехники

Бесплатный архив статей
(150000 статей в Архиве)

Алфавитный указатель статей в книгах и журналах

Бонусы:
Ваши истории
Загадки для взрослых и детей
Знаете ли Вы, что...
Зрительные иллюзии
Веселые задачки
Каталог Вивасан
Палиндромы
Сборка кубика Рубика
Форумы
Карта сайта

ДИАГРАММА
© 2000-2020

Дизайн и поддержка:
Александр Кузнецов

Техническое обеспечение:
Михаил Булах

Программирование:
Данил Мончукин

Маркетинг:
Татьяна Анастасьева

Перевод:
Наталья Кузнецова

Контакты

При использовании материалов сайта обязательна ссылка на http://www.diagram.com.ua

сделано в Украине
сделано в Украине

Диаграмма. Бесплатная техническая библиотека

Бесплатная техническая библиотека Бесплатная техническая библиотека, Энциклопедия радиоэлектроники и электротехники

НОВОСТИ НАУКИ И ТЕХНИКИ, НОВИНКИ ЭЛЕКТРОНИКИ
Бесплатная техническая библиотека / Лента новостей

Наночастицы вредят урожаю 04.09.2012

Попадающие в окружающую среду наночастицы способны проникать в корни растений, замедляя их рост, усиливая поглощение других загрязняющих веществ и потребность растений в удобрениях. Наночастицы, содержащиеся в выхлопных газах работающих на дизельном топливе автомобилей, в том числе сельскохозяйственной техники, сначала высвобождаются в атмосферу, после чего с дождевой водой попадают в почву. Еще одним механизмом попадания наночастиц в почву является практикуемое в США удобрение сельскохозяйственных угодий богатым питательными веществами осадком, остающимся после отстоя сточных и канализационных вод. Этот осадок содержит наночастицы, используемые в изготовлении тканей, солнцезащитных средств и других продуктов.

Исследователи из университета Калифорнии, Санта-Барбара, решили проанализировать предполагаемое воздействие наночастиц на сельскохозяйственные растения. Для этого они высаживали сою в почву, богатую двумя широко используемыми типами наноматериалов: наночастицами оксида церия, добавляемыми в качестве катализатора в дизельное топливо и другие продукты, и наночастицами оксида цинка, используемыми при производстве солнцезащитных и антибактериальных средств. В результате растения контактировали с наночастицами с момента появления побега и до созревания бобов.

По сравнению с контрольными растениями, растения сои, выращенные в почве, содержащей максимальную концентрацию наночастиц оксида цинка, формировали меньше листьев. В то же время, наночастицы оксида церия ухудшали рост растений при всех протестированных концентрациях. При этом оксид цинка накапливался в листьях растений, а оксид церия задерживался на уровне формируемых корнями клубеньков. При максимальных дозах оксида церия клубеньки не содержали бактерий, обеспечивающих связывание содержащегося в воздухе азота в форме аммонийных солей, выступающих в роли удобрения.

Способность бобовых, в том числе сои, усваивать содержащийся в воздухе азот является одним из наиболее важных микробиологических механизмов в сельском хозяйстве. Поэтому выявленный эффект наночастиц оксида церия вызывает большую тревогу.

Авторы параллельного исследования воздействовали на корни растений томатов, кабачков и сои фуллеренами - широко используемыми наноматериалами, производимыми из чистого углерода. Нетоксичные сами по себе фуллерены усиливали способность корней всех трех видов растений поглощать содержащиеся в почве пестициды. В рамках работы растения не достигали стадии плодоношения, поэтому, на сегодняшний день, неясно, чревато ли присутствие фуллеренов в почве накоплением пестицидов в плодах.

В любом случае полученные результаты заставляют задуматься о целесообразности широкого применения наночастиц, а также о необходимости разработки методов предотвращения их попадания в окружающую среду и нейтрализации уже существующих загрязнений.

>> Следующая новость: Загадка эволюции мозга человека разгадана 03.09.2012

<< Предыдущая новость: LG выпустит сверхчеткий 84-дюймовый 3D-телевизор 04.09.2012

Последние новости науки и техники, новинки электроники:

Создан материал, излучающий узкий спектр света при нагревании 30.03.2020

Физики Политехнического института Ренсселера синтезировали трехмерный вольфрамовый фотонный кристалл - материал, который может управлять свойствами фотона, - с шестью смещенными слоями. Его кристаллическая структура похожа на алмазную, а сам материал также имеет оптический резонатор, который дополнительно сужает спектр излучения. Сам фотонный кристалл сжимает испускаемый спектр света до диапазона около одного микрометра. Резонатор же позволяет сузить это значение до 0,07 микрометра. Тестируя ...>>

Космический уборщик 30.03.2020

Пocтoяннo paзвивaющaяcя кocмичecкaя индуcтpия пoзвoлилa нaм нe тoлькo выбpaтьcя зa пpeдeлы Зeмли и cтpoить плaны нa кoлoнизaцию дpугиx плaнeт, нo тaкжe cильнo нaмуcopить нa opбитe вoкpуг poднoй плaнeты. Пpoблeмa ужe cтaнoвитcя кaтacтpoфичecкoй и нуждaeтcя в peшeнии. Пoэтoму Eвpoпeйcкoe кocмичecкoe aгeнтcтвo плaниpуeт coздaть кocмичecкoгo убopщикa Clearspace-1. Ecли лeтoм пoлучитcя пoдпиcaть кoнтpaкт нa paзpaбoтку, тo ужe в 2025 гoду oн cмoжeт cтapтoвaть и пpиcтупить к cвoим oбязaннocтям. K ...>>

Умная колонка Redmi XiaoAI Touch Screen Speaker 29.03.2020

Компания Redmi представила умную колонку Redmi XiaoAI Touch Screen Speaker. Особенностью устройства является большой 8-дюймовый дисплей разрешением HD - с его помощью не только осуществляется управление, но также видеотелефония: в корпус колонки встроена web-камера. К слову, на нее же завязана работа детского режима: как только камера определяет перед собой ребенка, колонка переключается в особый режим работы с отображением только детского контента. В устройство встроен фирменный голосовой ...>>

Магнитные нано-пробы для исследования клеток 29.03.2020

Скорее всего, уже в ближайшем будущем в практической медицине будут активно использоваться так называемые нано-боты - специальные наноскопические микро-роботы, при помощи которых можно доставлять лекарственные соединения, минуя все барьеры, ведь подобные вещи разрабатываются и тестируются уже сейчас. Однако применение стандартной процедуры помещения нано-ботов в живую клетку достаточно сложен, прежде всего с энергетической точки зрения. Поэтому команда ученых из Университета Торонто представила ...>>

Суперконденсатор, растягивающийся в восемь раз 28.03.2020

Сотрудники Университета штата Мичиган и Университета Дьюка изобрели особенный конденсатор. Устройство уникально тем, что после неоднократного растяжения сохраняет функциональность. Изобретение американских ученых отличается от стандартной батареи по нескольким критериям. Так, устройство имеет свойство запасать энергию благодаря разделению зарядов и не может создавать собственного электричество. Суперконденсатор необходимо заряжать иным внешним устройством. Кроме того, эластичный суперконде ...>>

Случайная новость из Архива

Флэш-память QLC NAND плотностью 1 Тбит 24.05.2018

Компании Micron Technology и Intel объявили о начале поставок первой в отрасли флэш-памяти типа NAND, способной хранить в каждой ячейке 4 бита (QLC NAND). Кристаллы QLC NAND с 64-слойной структурой характеризуются наибольшей в мире плотностью 1 Тбит.

Кроме того, партнеры объявили о прогрессе в разработке трехмерной структуры NAND третьего поколения, состоящей из 96 слоев. За счет увеличения числа слоев удается повышать удельную плотность хранения в расчете на единицу площади кристалла.

В обоих случаях (64-слойной памяти QLC NAND и 96-слойной TLC NAND) используется техпроцесс CuA (CMOS under the array), позволяющий уменьшить размеры кристалла и повысить производительность по сравнению с конкурирующими подходами.

По словам Intel, память QLC NAND хорошо подойдет для облачных рабочих нагрузок с интенсивным чтением, для потребительских и клиентских вычислительных приложений.

Смотрите полный Архив новостей науки и техники, новинок электроники


Бесплатная техническая библиотека Бесплатная техническая документация для любителей и профессионалов