www.diagram.com.ua
www.diagram.com.ua
Русский: Русская версия English: English version
Translate it!
Поиск по сайту

+ Поиск по журналам
+ Поиск по статьям сайта
+ Поиск по схемам СССР
+ Поиск по Библиотеке

Бесплатная техническая библиотека:
Все статьи А-Я
Энциклопедия радиоэлектроники и электротехники
Новости науки и техники
Журналы, книги, сборники
Архив статей и поиск
Схемы, сервис-мануалы
Электронные справочники
Инструкции по эксплуатации
Голосования
Ваши истории из жизни
На досуге
Случайные статьи
Отзывы о сайте

Справочник:
Большая энциклопедия для детей и взрослых
Биографии великих ученых
Важнейшие научные открытия
Детская научная лаборатория
Должностные инструкции
Домашняя мастерская
Жизнь замечательных физиков
Заводские технологии на дому
Загадки, ребусы, вопросы с подвохом
Инструменты и механизмы для сельского хозяйства
Искусство аудио
Искусство видео
История техники, технологии, предметов вокруг нас
И тут появился изобретатель (ТРИЗ)
Конспекты лекций, шпаргалки
Крылатые слова, фразеологизмы
Личный транспорт: наземный, водный, воздушный
Любителям путешествовать - советы туристу
Моделирование
Нормативная документация по охране труда
Опыты по физике
Опыты по химии
Основы безопасной жизнедеятельности (ОБЖД)
Основы первой медицинской помощи (ОПМП)
Охрана труда
Радиоэлектроника и электротехника
Строителю, домашнему мастеру
Типовые инструкции по охране труда (ТОИ)
Чудеса природы
Шпионские штучки
Электрик в доме
Эффектные фокусы и их разгадки

Техническая документация:
Схемы и сервис-мануалы
Книги, журналы, сборники
Справочники
Параметры радиодеталей
Прошивки
Инструкции по эксплуатации
Энциклопедия радиоэлектроники и электротехники

Бесплатный архив статей
(150000 статей в Архиве)

Алфавитный указатель статей в книгах и журналах

Бонусы:
Ваши истории
Загадки для взрослых и детей
Знаете ли Вы, что...
Зрительные иллюзии
Веселые задачки
Каталог Вивасан
Палиндромы
Сборка кубика Рубика
Форумы
Карта сайта

ДИАГРАММА
© 2000-2020

Дизайн и поддержка:
Александр Кузнецов

Техническое обеспечение:
Михаил Булах

Программирование:
Данил Мончукин

Маркетинг:
Татьяна Анастасьева

Перевод:
Наталья Кузнецова

Контакты

При использовании материалов сайта обязательна ссылка на http://www.diagram.com.ua

сделано в Украине
сделано в Украине

Диаграмма. Бесплатная техническая библиотека

Бесплатная техническая библиотека Бесплатная техническая библиотека, Энциклопедия радиоэлектроники и электротехники

НОВОСТИ НАУКИ И ТЕХНИКИ, НОВИНКИ ЭЛЕКТРОНИКИ
Бесплатная техническая библиотека / Лента новостей

Эффективные органические солнечные панели 21.05.2012

Компания Heliatek установила новый рекорд эффективности органических солнечных панелей. Первые тесты показали, что коэффициент преобразования солнечной энергии в электрическую у новых органических солнечных ячеек Heliatek на 15-25 % выше, чем у кристаллических и тонкопленочных. В результате КПД новой ячейки составляет 10,7%.

Органические фотогальванические солнечные ячейки имеют большие перспективы. Прежде всего, они изготавливаются из дешевых материалов - в основном углерода, азота, водорода и кислорода. Благодаря этому их цена в 4 раза ниже, чем у кремниевых солнечных панелей. К тому же органические ячейки могут работать при низкой освещенности и высокой температуре.

До сих пор основным препятствием на пути к широкому распространению нового типа солнечных панелей была их невысокая эффективность на уровне 5-7%.

Специалистам Heliatek удалось повысить КПД почти до 11 % благодаря использованию семейства малых органических молекул - олигомеров. Они представляют собой молекулы-цепочки, состоящие из одинаковых звеньев. Для создания солнечных ячеек олигомеры наносятся на рулон-подложку с помощью вакуумного процесса при низкой температуре. В результате получается однородный фотогальванический нанослой, способный эффективно преобразовывать солнечный свет в электроэнергию даже в условиях низкой освещенности и температуре до 80 °С.

Последнее особенно важно и является уникальным достоинством нового типа органической солнечной панели. Дело в том, что при нагреве традиционных солнечных панелей их эффективность падает на 15-20 %. Поэтому кремниевые панели нужно охлаждать или смириться с потерей мощности в особенно солнечные и, казалось бы, идеальные для солнечной энергетики дни.

>> Следующая новость: Хомяк спит - теломеры растут 21.05.2012

<< Предыдущая новость: Квантовые точки - светильники будущего 22.05.2012

Последние новости науки и техники, новинки электроники:

Создан материал, излучающий узкий спектр света при нагревании 30.03.2020

Физики Политехнического института Ренсселера синтезировали трехмерный вольфрамовый фотонный кристалл - материал, который может управлять свойствами фотона, - с шестью смещенными слоями. Его кристаллическая структура похожа на алмазную, а сам материал также имеет оптический резонатор, который дополнительно сужает спектр излучения. Сам фотонный кристалл сжимает испускаемый спектр света до диапазона около одного микрометра. Резонатор же позволяет сузить это значение до 0,07 микрометра. Тестируя ...>>

Космический уборщик 30.03.2020

Пocтoяннo paзвивaющaяcя кocмичecкaя индуcтpия пoзвoлилa нaм нe тoлькo выбpaтьcя зa пpeдeлы Зeмли и cтpoить плaны нa кoлoнизaцию дpугиx плaнeт, нo тaкжe cильнo нaмуcopить нa opбитe вoкpуг poднoй плaнeты. Пpoблeмa ужe cтaнoвитcя кaтacтpoфичecкoй и нуждaeтcя в peшeнии. Пoэтoму Eвpoпeйcкoe кocмичecкoe aгeнтcтвo плaниpуeт coздaть кocмичecкoгo убopщикa Clearspace-1. Ecли лeтoм пoлучитcя пoдпиcaть кoнтpaкт нa paзpaбoтку, тo ужe в 2025 гoду oн cмoжeт cтapтoвaть и пpиcтупить к cвoим oбязaннocтям. K ...>>

Умная колонка Redmi XiaoAI Touch Screen Speaker 29.03.2020

Компания Redmi представила умную колонку Redmi XiaoAI Touch Screen Speaker. Особенностью устройства является большой 8-дюймовый дисплей разрешением HD - с его помощью не только осуществляется управление, но также видеотелефония: в корпус колонки встроена web-камера. К слову, на нее же завязана работа детского режима: как только камера определяет перед собой ребенка, колонка переключается в особый режим работы с отображением только детского контента. В устройство встроен фирменный голосовой ...>>

Магнитные нано-пробы для исследования клеток 29.03.2020

Скорее всего, уже в ближайшем будущем в практической медицине будут активно использоваться так называемые нано-боты - специальные наноскопические микро-роботы, при помощи которых можно доставлять лекарственные соединения, минуя все барьеры, ведь подобные вещи разрабатываются и тестируются уже сейчас. Однако применение стандартной процедуры помещения нано-ботов в живую клетку достаточно сложен, прежде всего с энергетической точки зрения. Поэтому команда ученых из Университета Торонто представила ...>>

Суперконденсатор, растягивающийся в восемь раз 28.03.2020

Сотрудники Университета штата Мичиган и Университета Дьюка изобрели особенный конденсатор. Устройство уникально тем, что после неоднократного растяжения сохраняет функциональность. Изобретение американских ученых отличается от стандартной батареи по нескольким критериям. Так, устройство имеет свойство запасать энергию благодаря разделению зарядов и не может создавать собственного электричество. Суперконденсатор необходимо заряжать иным внешним устройством. Кроме того, эластичный суперконде ...>>

Случайная новость из Архива

3D-графен 08.02.2014

Сюебин Ван (Xuebin Wang) и Йошио Бандо (Yoshio Bando) из Японского Международного центра наноархитектоники материалов (WPI-MANA) совместно с коллегами из Японии и Китая создали новый метод получения 3D-графена с использованием пузырьков, надуваемых в растворе полимера глюкозы. Полученный 3D-графен обладает устойчивостью и отличной проводимостью.

Пластинки графена - очень прочные, легкие и имею отличную проводимость. Теоретически макроскопические объемные графеновые сборки должны сохранять свойства наноразмерных графеновых чешуек. Однако в недавних попытках создания 3D-графена была получена слабая проводимость, вызванная плохим контактом между пластинками графена. Также проблемой была потеря прочности, а самоподдерживаемый 3D-графен все еще не был создан.

Вдохновленный древним кулинарным искусством "надутого сахара", Бандо и его команда доказали, что сжатая, когерентная природа соединившихся пузырьков окажет влияние на прочность и проводимость, если графен можно будет структурировать таким же способом. Ученые создали сироп из обычного сахара и хлорида аммония. Они нагревали сироп, получая полимер на основе глюкозы, называемый меланоидин, который затем надувался в пузыри с помощью газов, освобождаемым аммонием. Команда обнаружила, что наилучшее качество конечного продукта получается при балансе на этой стадии разложения аммония и полимеризации глюкозы.

По мере роста пузырьков оставшийся сироп стекает со стенок пузырьков, уходя из пересечений трех пузырьков. При дальнейшем нагревании, раскислении и дегидрировании меланоидин постепенно графитизируется, чтобы образовать "сжатый графен" - когерентную 3D-структуру, состоящую из графеновых оболочек, связанных структурой сжатого графена, который, соответственно, образуется из первоначальных стенок пузырьков и каркаса пересечений.

Пузырьковая структура обеспечивает свободное движение электронов через сеть, что означает, что графен полностью сохраняет проводимость. Кроме того, механическая прочность и упругость 3D-графена оказались исключительно высокими - команде удалось сжать его до 80% от его начального размера при очень малых потерях проводящих свойств или стабильности.

Развивая свое открытие, Бандо и его команда в своей лаборатории устойчиво получали сжатый 3D-графен граммовых объемов стоимостью 0,5 долл./грамм. Обладая низкой стоимостью и высокой масштабируемостью, новый метод может найти множество применений в технике и электронике. Полученный в большом количестве продукт был выборочно применен в высокоэффективном суперконденсаторе. Его максимальная плотность энергии стала наибольшей среди графеновых 3D-водных суперконденсаторов - 106 Вт/кг. Это открывает невероятные перспективы для быстрого развития электрического транспорта и авиации.

Смотрите полный Архив новостей науки и техники, новинок электроники


Бесплатная техническая библиотека Бесплатная техническая документация для любителей и профессионалов