Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Практические схемы узкополосных усилителей мощности на полевых транзисторах. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / ВЧ усилители мощности

Комментарии к статье Комментарии к статье

Усилители мощности, работающие в классе А, применяются редко. В основном это усилители ВЧ радиоприемных устройств с большой перегрузочной способностью. Практическая схема такого усилителя показана на рис.1. Входной L1С1-контур и выходной L2С2-контуры обычно синхронно перестраиваются и настроены на частоту входного сигнала.

Практические схемы узкополосных усилителей мощности на полевых транзисторах
Рис.1. Усилитель мощности класса А на МДП-транзисторе

Эквивалентное сопротивление Rэ выходного контура Rэ=P2p2/(RL+Rн'), где р=Sqr(L2/C2), Rн' - сопротивление нагрузки, внесенное в колебательный контур; RL - активное сопротивление потерь; Р2 - коэффициент включения контура. Величина Rн'=Rн/n22, где n2 - коэффициент трансформации.

Добротность выходного контура при его полном включении Q=RэRi/(Rэ+Ri)2pfoL2 снижается из-за шунтирующего действия выходного сопротивления транзистора Ri. У мощных МДП-транзисторов Ri невелико и обычно не превышает десятков килоом. Поэтому для увеличения Q2 используется неполное включение контура.

Полоса пропускания выходного контура 2Df2=fo2/Q2, а частота резонанса fo2=l/2pSqr(L2C2). В КВ-диапазоне такой усилитель может обеспечить Ки до нескольких десятков. Важным показателем усилителя является уровень шумов. Шумовые свойства мощных МДП-транзисторов рассмотрены в работах [1].

На рис.2 показана практическая схема УМ на мощном МДП-транзисторе КП901А. Поскольку не ставилась задача получения малой полосы частот L2C2, контур включен непосредственно в цепь стока и шунтируется нагрузкой Rн=50 Ом. В классе А усилитель имел Ku=5(Ku=SRн) и Кр>20 на частоте f=30 МГц. При переходе в нелинейный режим выходная мощность достигала 10 Вт.

Практические схемы узкополосных усилителей мощности на полевых транзисторах
Рис.2. Высокочастотный усилитель мощности на транзисторе КП901А

Двухкаскадный УМ (рис.3) выполнен на транзисторах КП902А и КП901А. Первый каскад работает в классе А, второй в классе В. Для обеспечения класса В достаточно исключить делитель из цени затвора второго транзистора. В усилителе использована широкополосная цепь связи между каскадами. На частоте 30 МГц усилитель обеспечивал Рвых=10 Вт при Ки>15 и Кр>100.

Практические схемы узкополосных усилителей мощности на полевых транзисторах
Рис.3. Двухкаскадный усилитель на мощных МДП-транзисторах

Узкополосный усилитель на рис.4 предназначен для работы в диапазоне частот 144...146 МГц. Он обеспечивает усиление по мощности 12 дБ, уровень шумов 2,4 дБ и уровень интермодуляционных искажений не более 30 дБ.

Практические схемы узкополосных усилителей мощности на полевых транзисторах
Рис.4. Узкополосный усилитель мощности для работы в диапазоне 144... 146 МГц

Резонансный усилитель на мощном МДП-транзисторе 2NS235B (рис.5) на частоте 700 МГц обеспечивает получение Рвых=17 Вт при КПД 40...45%.

Практические схемы узкополосных усилителей мощности на полевых транзисторах
Рис.5. Резонансный усилитель мощности с рабочей частотой 700 МГц

Усилитель на рис.6 содержит цепь нейтрализации, уменьшающую до уровня -50 дБ уровень обратных наводок. На частоте 50 МГц усилитель имеет увеличение по мощности 18 дБ, уровень шумов 2,4 дБ и выходную мощность до 1 Вт.

Практические схемы узкополосных усилителей мощности на полевых транзисторах
Рис.6. Малошумящий нейтрализованный УМ

В запатентованной схеме рис.7 (патент США 3.919563) на частоте 70 МГц достигнут реальный КПД, равный 90% при выходной мощности 5 Вт на частоте 70 МГц. Добротность выходного контура при этом равна 3.

Практические схемы узкополосных усилителей мощности на полевых транзисторах
Рис. 7. Ключевой усилитель мощности с КПД, равным 90%.

На рис.8 представлена схема трехкаскадного УМ на отечественных мощных МДП-транзисторах КП905Б, КП907Б и КП909Б.

Практические схемы узкополосных усилителей мощности на полевых транзисторах
Рис.8. Трехкаскадный резонансный УМ диапазона 300 МГц (нажмите для увеличения)

Усилитель обеспечивает мощность в нагрузке 30 Вт на частоте 300 МГц. В первых двух каскадах используются резонансные П-образные согласующие цепи, а в выходном каскаде - Г-образная цепь на входе и П-образная на выходе. Зависимости КПД и Рвых от Uc и Рвыхэ и Кр от Рвх, полученные экспериментально и расчетным путем, представлены на рис.9.

Практические схемы узкополосных усилителей мощности на полевых транзисторах
Рис.9. Зависимости параметров оконечного каскада трехкаскадного УМ
от напряжения питания (а) и входной мощности (б):
--- эксперимент; - - - расчет

При использовании УМ в АМ-радиопередатчиках (с амплитудной модуляцией) возникают трудности, связанные с обеспечением линейности модуляционной характеристики, т. е. зависимости Рвых от амплитуды входного сигнала. Они усугубляются при использовании резко нелинейных режимов работы, таких как класс С. На рис.10 представлена схема радиопередатчика КВ-диапазона с амплитудной модуляцией. Мощность передатчика 10,8 Вт при использовании мощного УМДП-транзистора VMP4. Модуляция осуществляется изменением напряжения смещения на затворе.

Практические схемы узкополосных усилителей мощности на полевых транзисторах
Рис.10. Схема радиопередатчика КВ-диапазона с амплитудной модуляцией

Для уменьшения нелинейности модуляционной характеристики (кривая 1 на рис.11) в передатчике используется обратная связь по огибающей. Для этого выходное АМ-напряжение выпрямляется и полученный низкочастотный сигнал используется для создания ООС. Модуляционная характеристика 2 на рис.10 иллюстрирует существенное улучшение линейности.

Практические схемы узкополосных усилителей мощности на полевых транзисторах
Рис.11. Модуляционная характеристика радиопередатчика в отсутствии (1) и при наличии (2) линеаризации

На рис.12 приведена принципиальная схема ключевого УМ с выходной номинальной мощностью 10 Вт и рабочей частотой 2,7 МГц. Усилитель выполнен на транзисторах КП902, КП904. Коэффициент полезного действия усилителя при номинальной выходной мощности 72%, коэффициент усиления мощности около 33 дБ. Усилитель возбуждается от логического элемента К133ЛБ, напряжение питания 27 В, пик-фактор напряжения стока выходного каскада равен 2,9. При соответствующей перестройке цепей связи усилитель с заданными параметрами работал в диапазоне 1,6...8,1 МГц.

Практические схемы узкополосных усилителей мощности на полевых транзисторах
Рис.12. Ключевой УМ с выходной номинальной мощностью 10 Вт (нажмите для увеличения)

Для обеспечения заданной мощности на более высоких частотах необходимо увеличивать мощность возбудителя.

Конструктивно оба УМ были собраны на печатных платах с использованием стандартных радиаторов 100x150x20 мм, что объясняется стандартными размерами блока УМ в радиопередатчиках. Катушки индуктивностей в цепях связи - цилиндрические на ферритовых стержнях марки ВЧ-30 диаметром 16. Добротность катушек индуктивностей Q=150.

В качестве блокировочных дросселей в цепях питания стока транзисторов одноваттного усилителя и предварительного каскада 10-ваттного усилителя использовались стандартные дроссели с индуктивностью 600 мкГн. Дроссель питания в цепи стока транзистора КП904 - на ферритовом кольце, его индуктивность 100 МкГн.

На рис.13 приведена принципиальная схема ключевого УМ с номинальной выходной мощностью Рвых=100 Вт, предназначенная для использования в необслуживаемых радиопередатчиках КВ-диапазона. Усилитель содержит каскад предварительного усиления, обратный на двух транзисторах КП907. На входе VT1 включен согласующий П-образный контур С1L1С2C3.

Практические схемы узкополосных усилителей мощности на полевых транзисторах
Рис.13. Ключевой УМ с номинальной выходной мощностью 100 Вт (нажмите для увеличения)

Оконечный каскад собран та шести транзисторах КП904А. Такое число транзисторов было выбрано по соображениям повышения КПД. Вместо транзисторов КП904Б можно включить также шесть транзисторов КП909 или три более мощных KП913. Оптимальный ключевой режим цепи стока обеспечивается формирующим контуром, содержащим элементы С14, С15, С16, L7.

Усилитель имеет общий КПД=62%. При этом электронный КПД выходного каскада составляет около 70%. Мостовая схема включения транзисторов предварительного каскада использована для сохранения работоспособности усилителя (хотя и с ухудшенными параметрами) при выходе из строя выходного транзистора. С этой же целью в истоки мощных транзисторов включены индивидуальные плавкие предохранители, назначение которых - отключать неисправный транзистор. Если в результате его пробоя в линейке транзисторов возникает режим, близкий к режиму короткого замыкания, это делает усилитель неработоспособным.

Параллельное включение мощных МДП ПТ не создает дополнительных трудностей при расчете и настройке УМ. Уменьшение КПД усилителя по сравнению с аналогичным по построению усилителем (см. рис.12) связано в основном с использованием транзисторов по мощности в 100-Вт усилителе. При снижении уровня выходной мощности до 50 Вт КПД усилителя возрастает до 85%, а электронный КПД -до 90%. Приведенные на рис.13 значения параметров элементов соответствуют частоте 2,9 МГц.

Пик-фактор напряжения на стоках транзисторов КП904 равен 2,8, а сами транзисторы работают в режиме, близком к оптимальному. Пик-фактор напряжения стока в каскадах на транзисторах КП907 равен П=2,1. Транзистор работает в ключевом режиме, однако оптимальность режима не обеспечивается, поскольку оптимальный ключевой режим для данных транзисторов при Uс=27 В и угле отсечки ф=90° был бы опасен из-за значительного пик-фактора, при котором напряжение на стоке может превысить максимально допустимое напряжение, равное 60 В для транзистора КП907.

На рис.14, а приведены экспериментальные и расчетные кривые, иллюстрирующие зависимости КПД, Рвых и hэ от угла отсечки тока стока. Из рисунка видно хорошее приближение расчетных данных к экспериментальным. Следует отметить что область возможных значений углов отсечки оказывается довольно узкой. Увеличению углов отсечки препятствует быстрый рост пик-фактора напряжения на стоке, а уменьшению - рост необходимого напряжения возбуждения, которое довольно скоро начинает совместно с напряжением смещения Uз превышать Uзи доп. Разумеется, при уменьшении уровня Рвыт диапазон возможных изменений углов отсечки тока стока расширяется.

Практические схемы узкополосных усилителей мощности на полевых транзисторах
Рис.14. Зависимости выходной мощности и КПД от угла отсечки 0 (а)
и от температуры окружающей среды (б):
--- эксперимент; - - - расчет

Усилитель выполнен на печатной плате. В качестве теплоотвода использован радиатор размерами 130X130X50 мм. В цепях питания транзисторов КП907 использованы стандартные дроссели ДМ-01 индуктивностью 280 мкГн. Дроссели моста сложения намотаны на ферритовых кольцах ВК-30 диам.=26. Дроссель в цепи питания выходного каскада намотан на ферритовом кольце ВЧ-30 диам.=30. Катушка индуктивности в цепи связи выходного каскада с нагрузкой - воздушная, намотана посеребренной проволокой диам.=2,5, диаметр витка 30 мм, L=80 нГн.

Температурные зависимости выходной мощности РВых и КПД ключевого УМ с выходной мощностью 100 Вт приведены на рис.14,б. Из рассмотрения приведенных зависимостей видно, что в диапазоне -60...+60°С, входная мощность УМ изменяется не более чем на ±10%. Незначительное влияние оказывает температура и на КПД, который в указанном диапазоне изменяется на ±5%. При этом наблюдается падение выходной мощности и КПД с ростом температуры, связанное с уменьшением крутизны 5 с ростом температуры. В обычном диапазоне температур -60 ... +60° С изменение hэ и Рвых незначительно, причем это достигается без каких-либо специальных мер термостабилизации УМ. Последнее также является достоинством мощных МДП-транзисторов.

Литература:

  1. Схемотехника устройств на мощных полевых транзисторах. Справочник. Под редакцией В.П.Дьяконова.

Публикация: Н. Большаков, rf.atnn.ru

Смотрите другие статьи раздела ВЧ усилители мощности.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Искусственная кожа для эмуляции прикосновений 15.04.2024

В мире современных технологий, где удаленность становится все более обыденной, сохранение связи и чувства близости играют важную роль. Недавние разработки немецких ученых из Саарского университета в области искусственной кожи представляют новую эру в виртуальных взаимодействиях. Немецкие исследователи из Саарского университета разработали ультратонкие пленки, которые могут передавать ощущение прикосновения на расстоянии. Эта передовая технология предоставляет новые возможности для виртуального общения, особенно для тех, кто оказался вдали от своих близких. Ультратонкие пленки, разработанные исследователями, толщиной всего 50 микрометров, могут быть интегрированы в текстильные изделия и носиться как вторая кожа. Эти пленки действуют как датчики, распознающие тактильные сигналы от мамы или папы, и как исполнительные механизмы, передающие эти движения ребенку. Прикосновения родителей к ткани активируют датчики, которые реагируют на давление и деформируют ультратонкую пленку. Эта ...>>

Кошачий унитаз Petgugu Global 15.04.2024

Забота о домашних животных часто может быть вызовом, особенно когда речь заходит о поддержании чистоты в доме. Представлено новое интересное решение стартапа Petgugu Global, которое облегчит жизнь владельцам кошек и поможет им держать свой дом в идеальной чистоте и порядке. Стартап Petgugu Global представил уникальный кошачий унитаз, способный автоматически смывать фекалии, обеспечивая чистоту и свежесть в вашем доме. Это инновационное устройство оснащено различными умными датчиками, которые следят за активностью вашего питомца в туалете и активируются для автоматической очистки после его использования. Устройство подключается к канализационной системе и обеспечивает эффективное удаление отходов без необходимости вмешательства со стороны владельца. Кроме того, унитаз имеет большой объем смываемого хранилища, что делает его идеальным для домашних, где живут несколько кошек. Кошачий унитаз Petgugu разработан для использования с водорастворимыми наполнителями и предлагает ряд доп ...>>

Привлекательность заботливых мужчин 14.04.2024

Стереотип о том, что женщины предпочитают "плохих парней", долгое время был широко распространен. Однако, недавние исследования, проведенные британскими учеными из Университета Монаша, предлагают новый взгляд на этот вопрос. Они рассмотрели, как женщины реагируют на эмоциональную ответственность и готовность помогать другим у мужчин. Результаты исследования могут изменить наше представление о том, что делает мужчин привлекательными в глазах женщин. Исследование, проведенное учеными из Университета Монаша, приводит к новым выводам о привлекательности мужчин для женщин. В рамках эксперимента женщинам показывали фотографии мужчин с краткими историями о их поведении в различных ситуациях, включая их реакцию на столкновение с бездомным человеком. Некоторые из мужчин игнорировали бездомного, в то время как другие оказывали ему помощь, например, покупая еду. Исследование показало, что мужчины, проявляющие сочувствие и доброту, оказались более привлекательными для женщин по сравнению с т ...>>

Случайная новость из Архива

Оптоволоконные датчики для безопасности поездов 01.10.2013

Система оптоволоконных датчиков вдоль 36-километрового участка высокоскоростных пригородных железнодорожных путей, соединяющих Гонконг и материковый Китай, за последние несколько лет произвела более 10 миллионов измерений. Эти измерения продемонстрировали работу системы, которая призвана защитить пассажирские и грузовые поезда от несчастных случаев. Датчики могут оперативно обнаружить вероятные проблемы, такие как чрезмерная вибрация, механические дефекты, скоростные и температурные аномалии.

Как только система фиксирует проблему, она тут же оповещает о ней машиниста. Тот, в свою очередь, должен предпринять ряд мер для того, чтобы избежать несчастного случая. Во время семилетних испытаний датчики около 30 раз фиксировали аномальные вибрации. И в некоторых случаях вибрации действительно представляли опасность для поезда, и даже могли привести к его крушению. В других случаях аномальная вибрация наблюдалась из-за использования неподходящей смазки, а значит, позволяли механикам во время заменить его и предотвратить преждевременный износ деталей.

Система оптоволоконных датчиков была разработана для облегчения технического обслуживания железнодорожного транспорта и сокращения расходов на его ремонт. Уже сейчас понятно, что система позволяет железнодорожным компаниям экономить не менее 250 тыс. долларов в год. Важно, что сама сеть оптоволоконных датчиков стоит на треть дешевле других систем мониторинга, использующихся на высокоскоростной железной дороге.

Сейчас новую оптоволоконную систему датчиков установили на всех пригородных железнодорожных маршрутах в Гонконге, а в скором времени сеть будет развернута на железных дорогах в Сингапуре и Австралии.

В настоящее время железнодорожная отрасль во всем мире бурно развивается: скорость поездов растет, время в пути сокращается и это делает данный вид транспорта все более популярным. Например, в Китае и других странах скорость многих поездов уже свыше 300 км/ч, а значит, требуются дополнительные меры по обеспечению безопасности пассажиров, грузов и транспорта. И новая система оптоволоконных датчиков - относительно недорогой и эффективный способ обеспечения такой безопасности.

Основой новой системы датчиков является технология, разработанная еще в 70-80-х гг., и известная как волоконная решетка Брэгга. Этот тип датчиков отражает узкие спектры света, длины волн которых сдвигаются из-за температурных/деформационных вариаций. Соединение волоконной решетки Брэгга с механическими преобразователями позволяет измерять давление, ускорение и другие параметры.

Датчики размещаются в отсеках поезда или вдоль железнодорожных путей. При возникновении внезапной помехи на рельсах или чрезмерной вибрации - изменяется спектр отражения решеток. А так как система работает исключительно по методу оптического обнаружения, то нет никаких проблем с электромагнитными помехами от линий электропередач, которые идут параллельно многим современным железнодорожным линиям.

Другие интересные новости:

▪ Селенидный фонон

▪ Акустический левитатор

▪ STM32CubeIDE - новый универсальный инструмент разработки от ST

▪ Противопожарный датчик в лесу

▪ Старое сердце омоложено стволовыми клетками

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Электрику. ПУЭ. Подборка статей

▪ статья Сбиться с ног. Крылатое выражение

▪ статья Есть ли муравьи-рабовладельцы? Подробный ответ

▪ статья Пастернак посевной. Легенды, выращивание, способы применения

▪ статья Роторный ветряк закрутится быстрее. Энциклопедия радиоэлектроники и электротехники

▪ статья Стереодекодер сигналов с пилот-тоном. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024