Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Цифровой термометр. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Регуляторы мощности, термометры, термостабилизаторы

Комментарии к статье Комментарии к статье

Прибор предназначен для точного измерения в широких пределах температуры различных объектов и может быть рекомендован для использования как в быту, так и в технике. В отличие от опубликованных ранее подобных устройств, в этом термометре использована БИС серии К572, поэтому он содержит относительно небольшое число элементов. Термометр готов к работе сразу после включения питания. Но, к сожалению, отсутствие серийных датчиков с малой температурной инерцией приводит к значительной длительности процесса измерения (около пяти минут), что несколько ограничивает область применения термометра.

Основные технические характеристики

Пределы измеряемой температуры, °С-50...+99.9
Основная погрешность измерения, °С±0,1
Дополнительные погрешности, °С:
от изменения температуры окружающей среды в пределах от 0 до +40 °С±0,05
от смены датчиков±0,1
Наибольшая длина экранированного кабеля для соединения датчиков с прибором (при сопротивлении каждого провода в кабеле не более 5 Ом), м300
Потребляемая мощность, Вт3
Габариты, мм120Х 110Х40

Структурная схема цифрового термометра показана на рис.1. Изменение температуры объекта, в котором размещен термодатчик, вызывает изменение сопротивления датчика, которое в блоке Е1 преобразуется в соответствующее изменение напряжения. Преобразователь U1 питается от стабилизатора тока G1. Выходной сигнал блока Е1 усиливается усилителем А1 и поступает к аналого-цифровому преобразователю (АЦП) U2, на выходе которого включен цифровой блок индикации H1, высвечивающий текущую температуру контролируемого объекта.

Цифровой термометр. Структурная схема
Структурная схема

Переключателем SB1 (см. принципиальную схему) выбирают один из термодатчиков RK1, RK2, установленных на объекте, температуру которого необходимо измерить. Датчик включен в одно из плеч измерительного моста постоянного тока, выполненного на прецизионных резисторах R1 - R5. Точность и линейность показаний индикатора в пределах измеряемой температуры определяется в основном стабильностью тока, питающего измерительный мост.

Цифровой термометр. Принципиальная схема
Принципиальная схема (нажмите для увеличения)

Стабилизатор тока питания моста выполнен на операционном усилителе DA1.2. Подстроечный резистор R11 позволяет в небольших пределах изменять значение выходного тока, что дает возможность изменять крутизну преобразования сопротивления термодатчика в напряжение и обеспечивает установку верхней границы измеряемой температуры. Нижнюю границу устанавливают подстроечным резистором R1.

Напряжение с диагонали измерительного моста, пропорциональное температуре, усиливается дифференциальным усилителем, выполненным на операционном усилителе DA1.1, и с его выхода подается на вход АЦП. Конденсаторы С1, С2, С4 служат для фильтрации помех.

АЦП реализован на БИС К572ПВ2А и работает по принципу двойного интегрирования с автокорректировкой "нуля" и автоматическим определением, полярности входного сигнала. Сигнал, несущий информацию о текущей температуре выбранного объекта, представлен на выходе АЦП в виде, удобном для отображения семиэлементными индикаторами. Он поступает на табло, состоящее из трех светодиодных индикаторов HG1 - HG3 и светодиода HL1.

Светодиод загорается при отрицательной температуре измеряемого объекта. Для разделения целых и десятых долей градуса на индикаторе HG2 высвечивается запятая.

Питается термометр от сети переменного тока напряжением 220 В через трансформатор Т1. Для стабилизации питающего двуполярного напряжения предусмотрены параметрические стабилизаторы VD1R18 и VD2R19. Образцовое напряжение для АЦП и стабилизатора тока снято с делителя напряжения на резисторах R16, R17. Оно дополнительно фильтровано конденсатором С12.

Все элементы цифрового термометра размещены на двух печатных платах (см. рис.3 и рис.4 ), соединенных между собой уголками.

Чертеж основной платы

Чертеж дополнительной платы

В приборе использованы постоянные резисторы R2 - R5 - С2-29В-0,125: R18, R19 - МЛТ-0,5; подстроечные - СПЗ-38, остальные - МЛТ-0,125. Конденсаторы С1 - С5, С9 - К73-17-С7, С10, С11 - КТ.1; С6, С8 - К10-7; С12-С 14 - К50-6.

Для обеспечения взаимозаменяемости термодатчиков при сохранении заданной точности использованы серийно выпускаемые термопреобразователи сопротивления ТСМ-6114 ГОСТ 6651-72 с номинальной статической характеристикой гр.23. При отсутствии стандартных датчиков можно изготовить их самостоятельно. Для этого необходимо отмерить 619 см провода ПЭТВ диаметром 0,05 мм. намотать его бифилярно на изоляционную оправку, к одному концу провода датчика припаять один гибкий вывод, ко второму - два таких же вывода.

Можно припаять датчик прямо к проводникам подводящего кабеля. На каждый датчик потребуется три проводника в кабеле. Такое подключение позволяет скомпенсировать температурную погрешность, вносимую проводниками кабеля.

Далее изготовляют корпус, способный работать в той среде, где будет установлен датчик, закрепляют в нем оправку с обмоткой и заливают эпоксидной смолой. Сопротивление датчика при температуре 20 °С должно быть 57, 52 Ом.

Трансформатор питания для уменьшения габаритов выполнен из четырех магнитопроводовПЛ6,5Х12,5х16 (сечение около 3 см.кв). Обмотка I содержит 3000 витков провода ПЭВ-2 0,08, II - 2Х130 витков провода ПЭВ-2 0,18, 111 - 70 витков провода ПЭВ-2 0,4. В трансформаторе питания возможно применение иного магнитопровода, однако высоту корпуса термометра при этом придется увеличить.

Микросхему К157УД2 можно заменить на К140УД20 с соответствующими цепями коррекции: К572ПВ2А - на КР572ПВ2А, но придется изменить рисунок проводников печатной платы, а при увеличении допустимой погрешности до ±0,3 °С можно использовать и К572ПВ2 с любым буквенным индексом.

Безошибочно собранный из заведомо исправных элементов термометр налаживания не требует, необходимо лишь установить границы измеряемого диапазона. Для этого вместо датчика включают его эквивалент (магазин резисторов или точный резистор). Вначале включают резистор сопротивлением 41,7 Ом, и резистором R1 устанавливают на табло показание минус 50 °С; затем заменяют резистор на другой, с номиналом 75,59 Ом, и резистором R11 устанавливают показание плюс 99,9 °С. Операцию калибровки следует повторить дважды.

При необходимости расширить интервал измеряемой температуры до 180°С нужно подключить к АЦП еще один цифровой индикатор АЛС324Б. Остальные технические характеристики термометра при этом сохраняются.

Авторы: Н.Хоменков, А. Зверев, г. Орел; Публикация: Н. Большаков, rf.atnn.ru

Смотрите другие статьи раздела Регуляторы мощности, термометры, термостабилизаторы.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Использование Apple Vision Pro во время операций 16.03.2024

Медицинская команда больницы Кромвеля в Лондоне впервые применила Apple Vision Pro в ходе двух операций на позвоночнике. Это событие подтверждает потенциал гарнитуры в качестве медицинского инструмента, изменяющего подход к хирургической практике. Хотя сами врачи не использовали Vision Pro, операционная медсестра работала с виртуальной реальностью, используя очки во время подготовки и выполнения процедур. Гарнитура позволила просматривать виртуальные экраны в операционной, выбирать инструменты и следить за ходом операции. Программное обеспечение, разработанное компанией eXeX, специализирующейся на создании приложений на основе искусственного интеллекта для хирургии, существенно улучшило процесс оказания медицинской помощи пациентам. Использование Apple Vision Pro открывает новые возможности для разработки приложений в сфере здравоохранения, таких как клиническое образование, планирование операций, обучение и медицинская визуализация. Внедрение Apple Vision Pro в медицинскую пр ...>>

Хранение углерода в Северное море 16.03.2024

Министр энергетики Норвегии Терье Осланд объявил о запуске проекта Longship, нацеленного на создание центрального хранилища углекислого газа в Северном море. Этот амбициозный проект оценивается в $2,6 млрд и направлен на применение технологии CCS (углеродного захвата и хранения) для смягчения воздействия климатических изменений. Норвегия уже имеет опыт в области CCS благодаря успешным проектам Sleipner и Snohvit, и сейчас стремится увеличить объем углерода, запечатываемого под морским дном. План Longship предусматривает создание мощности по захвату и хранению 1,5 млн. тонн углерода ежегодно в течение 25 лет. Несмотря на позитивные перспективы, существуют опасения по поводу долгосрочных последствий такого хранения. Однако сторонники проекта утверждают, что морское хранение углерода имеет ряд преимуществ, включая минимальное воздействие на окружающую среду. Проект Longship осуществляется при участии компаний Equinor, Shell и TotalEnergies через совместное предприятие Northern Li ...>>

Выращены мини-органы из амниотической жидкости человека 15.03.2024

Международная команда ученых под руководством профессора Фань Сюлиня из Университета Чжэцзян разработала уникальный способ выращивания мини-органов из клеток, обнаруженных в амниотической жидкости человека. Этот значительный прорыв в медицине может привести к улучшению диагностики и лечения врожденных заболеваний. Органоиды, представляющие собой трехмерные клеточные структуры, имитирующие органы в меньшем масштабе, были выращены из клеток легких, почек и тонкого кишечника, найденных в амниотической жидкости. Этот метод открывает новые возможности для изучения различных состояний плода и может стать ключом к ранней диагностике и лечению врожденных дефектов. Хотя пока не проводились попытки использования этого метода в лечении, ученые надеются, что их исследования в будущем помогут бороться с серьезными врожденными заболеваниями, которые затрагивают миллионы новорожденных ежегодно. Этот прорыв может изменить практику медицинских вмешательств, позволяя диагностировать и лечить врожд ...>>

Случайная новость из Архива

Огромные сенсорные дисплеи Microsoft 09.09.2014

Microsoft планирует начать серийный выпуск крупноформатных сенсорных дисплеев для конференц-залов, выставок, магазинов и других сфер применения, сообщает The Australian. Планами корпорации поделился Стивен Элоп (Stephen Elop), бывший гендиректор Nokia, который ныне занимает должность исполнительного вице-президента Microsoft по устройствам.

Дисплеи будут базироваться на технологиях компании Perceptive Pixel, которую Microsoft приобрела в 2012 г. за неизвестную сумму. Perceptive Pixel - небольшая нью-йоркская фирма, основанная в 2006 г. техническим специалистом Джефферсоном Ханом (Jefferson Han).

Нынешняя линейка продуктов Perceptive Pixel включает сенсорные дисплеи с диагональю 55 и 82 дюйма.

Младшая модель предназначена для небольших рабочих групп, позволяет делиться идеями во время совещаний, может использоваться в небольших конференц-залах и в вестибюлях в качестве информационного табло. Старшая модель предназначена для более крупных помещений.

Присоединившись к Microsoft, команда Perceptive Pixel вошла в состав группы разработчиков Office, после чего в дисплеи совместными усилиями была добавлена поддержка Lync, OneNote и PowerPoint. В 2013 г. в результате реструктуризации команда перешла в подразделение Devices под руководство Элопа.

В Microsoft заявляют, что планируют сделать дисплеи доступными более широкому кругу корпоративных заказчиков за счет снижения их стоимости. Конкретные цены в компании не сообщили. Сейчас 55-дюймовая модель продается по цене около $7,5 тыс.

Другие интересные новости:

▪ Высокоинтегрированный микроконтроллер со встроенной программируемой логикой

▪ Минисканер определит состав любого объекта

▪ Безопасное топливо не загорается при контакте с огнем

▪ Животные чувствуют магнитное поле благодаря бактериям

▪ Дышите глубже, вы взволнованы

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Цветомузыкальные установки. Подборка статей

▪ статья Безопасность на железнодорожном транспорте. Основы безопасной жизнедеятельности

▪ статья Что такое наследственность? Подробный ответ

▪ статья Эдельвейс. Легенды, выращивание, способы применения

▪ статья Энергия ветра. Энциклопедия радиоэлектроники и электротехники

▪ статья Прячущаяся свеча. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024