Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Стенд для макетирования радиоэлектронных устройств. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Технологии радиолюбителя

Комментарии к статье Комментарии к статье

Один из этапов разработки различных радиоэлектронных узлов - макетирование. В его процессе уточняют выбор активных компонентов, устанавливают режимы их работы, подбирают номиналы элементов, проводят электрические испытания и т. д. В настоящее время все более популярными становятся так называемые беспаечные макетные платы, которые позволяют быстро (без применения пайки) собрать макетируемое устройство и провести требуемые работы по его налаживанию.

Однако для макетирования, кроме такой платы, потребуются еще и источники питания, без которых, конечно, не обойтись, а также некоторые другие приборы - генераторы импульсов различной формы, маломощный УЗЧ, динамическая головка, элементы световой индикации и т. п. Если объединить эти приборы в одну конструкцию, получится удобный стенд для макетирования различных электронных устройств. Описание именно такого стенда и предлагается вниманию читателей. В зависимости от "специализации" в его состав могут входить те или иные узлы.

Стенд для макетирования радиоэлектронных устройств
Рис. 1 (нажмите для увеличения)

Схема предлагаемого стенда показана на рис. 1. В его состав входят блок питания, УЗЧ, динамическая головка, генераторы прямоугольных и треугольных импульсов с различной амплитудой и компаратор со световой индикацией выходного уровня.

Предлагаемый стенд позволит быстро провести макетирование отдельных узлов радиоэлектронной аппаратуры: усилителей ЗЧ и ВЧ, детекторов, генераторов, устройств на транзисторах, аналоговых, цифровых микросхемах и микроконтроллерах. Компаратор со световой индикацией поможет зафиксировать моменты изменения напряжения, проверить напряжение логических уровней и т. п. Наличие ВЧ и НЧ разъемов позволит подключить различные измерительные приборы или дополнительные источники питания.

С помощью стенда можно быстро проверить исправность микрофонов, в том числе и электретных, поскольку в нем есть источник питания и УЗЧ с динамической головкой. Наличие генератора прямоугольных импульсов позволит проверить работоспособность цифровых микросхем малой и средней степени интеграции: логических элементов, счетчиков, регистров и т. п. С помощью этого генератора и УЗЧ можно проверить исправность пьезоизлучателей, головных телефонов, агенерато-ром треугольных импульсов и осциллографом легко определить момент появления ограничений в различных каскадах усилителей ЗЧ. Перечислять все возможные варианты нет смысла. Каждый радиолюбитель в соответствии со своими потребностями сможет найти применение такому устройству.

Блок питания вырабатывает стабилизированное регулируемое двухполярное напряжение 2х(0...12) В при токе нагрузки до 0,4 А с защитой от замыкания и световой и звуковой сигнализацией аварийного режима, а также фиксированное стабилизированное +5 В при токе до 0,4 А. В состав блока питания входят понижающий трансформатор T1, двухполярный выпрямитель на диодном мосте VD1, стабилизатор напряжения +5 В на интегральном стабилизаторе DA2, регулируемый стабилизатор напряжения плюсовой полярности 0.12 В на микросхемах DA1, DA3, транзисторах VT1, VT3, оптопаре U1 и регулируемый стабилизатор минусовой полярности на транзисторах VT2, VT4 и оптопаре U2. Светодиод HL1 - индикатор включения стенда.

Регулируемый стабилизатор напряжения плюсовой полярности собран по компенсационной схеме. Транзистор VT1 - регулирующий, микросхема параллельного стабилизатора напряжения DA3 - управляющая. Вследствие того что ее вывод 2 подключен не к общему проводу, а к стабилизатору напряжения -2,5 В, собранному на микросхеме DA1, оказалось возможным регулировать выходное напряжение (резистором R10) в интервале от 0 до 12 В. На транзисторе VT3 и оптопаре U1 собрана защита по току, датчик тока -

резистор R8. Когда выходной ток стабилизатора достигнет 0,4 А, транзистор VT3 откроется и напряжение на базе регулирующего транзистора VT1 уменьшится, поэтому выходной ток будет ограничен указанным значением. Одновременно откроется фототранзистор оптопары U1, и на звуковой излучатель HA1 со встроенным генератором и мигающий светодиод HL2 поступит питающее напряжение. Включатся сигнализаторы перегрузки блока питания по току - зазвучит прерывистый звуковой сигнал и начнет вспыхивать светодиод.

Регулируемый стабилизатор напряжения минусовой полярности "привязан" к выходному напряжению стабилизатора плюсовой полярности. Эта привязка реализована с помощью ОУ DA4.1. При изменении напряжения плюсовой полярности аналогично изменяется и минусовое напряжение. Защита по току собрана на транзисторе VT4 и оптопаре U2, датчик тока - резистор R7. Поэтому регулируют выходное напряжение одним переменным резистором R10, а при срабатывании защиты по току в одном из стабилизаторов выходное напряжение уменьшается у обоих и подаются световой и звуковой сигналы. Следует отметить, что в стабилизаторе напряжения +5 В индикации перегрузки нет, там ток ограничен самой микросхемой стабилизатора (DA2).

Генератор прямоугольных импульсов с частотой следования 1 кГц и амплитудой 5 В собран на логическом элементе DD1.1. С его выхода сигнал через токоограничивающий резистор R26 поступает на выходное гнездо XS6. Через еще один токоограничивающий резистор R20 он подается на базу транзистора VT5, и на его коллекторе формируются прямоугольные импульсы с той же частотой, но с амплитудой, равной выходному напряжению регулируемого стабилизатора плюсовой полярности. Эти импульсы через резистор R18 поступают на выходное гнездо XS5. На ОУ DA4.2 собран интегратор, который из прямоугольных формирует импульсы треугольной формы с амплитудой 1 В, поступающие затем на гнездо XS4.

Компаратор напряжения собран на логических элементах DD1.2, DD1.3, его входное сопротивление - не менее 500 кОм, резистором R14 устанавливают порог его срабатывания в интервале 2,5...12 В. Когда входное напряжение (плюсовой полярности), поступающее на гнездо XS7, превысит установленный порог, загорится светодиод HL3.

На микросхеме DA5 собран УЗЧ, который можно использовать отдельно или подключить к его выходу динамическую головку BA1. Для этого в гнездо XS2 устанавливают вилку, у которой соединены между собой контакты 1 и 4, а также 2 и 3. Входной сигнал подают на гнездо XS3, громкость регулируют переменным резистором R15. Динамическую головку можно использовать и отдельно.

В устройстве применены постоянные резисторы МЛТ, С2-23, переменные - СП4-1, СПО, оксидные конденсаторы - импортные, остальные - керамические К10-17. Выключатель - МТ1, трансформатор - ТПП112-19 или другой с номинальной мощностью 7.10 Вт и двумя вторичными обмотками по 11 В с выходным током до 0,4 А. Взамен диодного моста КЦ407А можно применить отдельные выпрямительные диоды, например, 1N4001-1N4007. В устройстве установлены гнезда: XS1 - от кабеля питания дисковода, остальные - серий PBS, PBD.

Стенд для макетирования радиоэлектронных устройств
Рис. 2 (нажмите для увеличения)

Все элементы установлены на печатной плате из фольгированного с одной стороны стеклотекстолита толщиной 2 мм со стороны печатных проводников, чертеж которой показан на рис. 2. Для динамической головки (она размещена в правой части платы) сверлят несколько десятков отверстий диаметром 2.3 мм (на рис. 2 не показаны), их заклеивают со стороны установки головки отрезком тонкой ткани. Выключатель, переменные резисторы, гнезда, держатель плавкой вставки и светодиоды устанавливают в отверстия платы. Кроме того, трансформатор, динамическую головку, акустический излучатель, все гнезда и светодиоды приклеивают к плате термоклеем.

Внешний вид стенда показан на 1-й с. обложки. Плата с помощью уголков закреплена на металлическом основании (алюминиевой пластине толщиной 2,3 мм) под углом 50.60°. Размеры основания зависят от типа примененной беспаечной платы. Основание одновременно использовано как теплоотвод. С помощью винтов к нему прикрепляют микросхему DA2 (непосредственно) и транзисторы VT1, VT2 (через теплопроводящие изолирующие прокладки). С боков и сзади элементы платы защищены от механических воздействий стенками. С нижней стороны основания установлены амортизирующие "ножки". Беспаечную плату можно прикрепить к основанию с помощью герметика. По бокам основания закреплены разъемы для подключения измерительных приборов, например, байонетные гнезда СР50-73Ф (BNC) и винтовые клеммники для внешних источников питания и других приборов. Тип и число разъемов может выбрать сам пользователь.

Налаживание начинают с проверки работоспособности блока питания. Интервал регулировки выходного напряжения устанавливают подборкой резисторов R4 (верхняя граница) и R9 (установка нуля). В случае возбуждения регулируемого стабилизатора плюсовой полярности необходимо между выводами 1 и 3 параллельного стабилизатора DA3 включить керамический конденсатор емкостью 0,01 мкФ (на чертеже печатной платы он обозначен С'). Частоту генератора прямоугольных импульсов устанавливают подборкой резистора R22, а резистором R24 - амплитуду напряжения треугольной формы. На движки переменных резисторов устанавливают ручки с указателями и снабжают шкалами.

Внимание! Беспаечные платы не рассчитаны на работу в сети 220 В.

Автор: И. Нечаев

Смотрите другие статьи раздела Технологии радиолюбителя.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Использование Apple Vision Pro во время операций 16.03.2024

Медицинская команда больницы Кромвеля в Лондоне впервые применила Apple Vision Pro в ходе двух операций на позвоночнике. Это событие подтверждает потенциал гарнитуры в качестве медицинского инструмента, изменяющего подход к хирургической практике. Хотя сами врачи не использовали Vision Pro, операционная медсестра работала с виртуальной реальностью, используя очки во время подготовки и выполнения процедур. Гарнитура позволила просматривать виртуальные экраны в операционной, выбирать инструменты и следить за ходом операции. Программное обеспечение, разработанное компанией eXeX, специализирующейся на создании приложений на основе искусственного интеллекта для хирургии, существенно улучшило процесс оказания медицинской помощи пациентам. Использование Apple Vision Pro открывает новые возможности для разработки приложений в сфере здравоохранения, таких как клиническое образование, планирование операций, обучение и медицинская визуализация. Внедрение Apple Vision Pro в медицинскую пр ...>>

Хранение углерода в Северное море 16.03.2024

Министр энергетики Норвегии Терье Осланд объявил о запуске проекта Longship, нацеленного на создание центрального хранилища углекислого газа в Северном море. Этот амбициозный проект оценивается в $2,6 млрд и направлен на применение технологии CCS (углеродного захвата и хранения) для смягчения воздействия климатических изменений. Норвегия уже имеет опыт в области CCS благодаря успешным проектам Sleipner и Snohvit, и сейчас стремится увеличить объем углерода, запечатываемого под морским дном. План Longship предусматривает создание мощности по захвату и хранению 1,5 млн. тонн углерода ежегодно в течение 25 лет. Несмотря на позитивные перспективы, существуют опасения по поводу долгосрочных последствий такого хранения. Однако сторонники проекта утверждают, что морское хранение углерода имеет ряд преимуществ, включая минимальное воздействие на окружающую среду. Проект Longship осуществляется при участии компаний Equinor, Shell и TotalEnergies через совместное предприятие Northern Li ...>>

Выращены мини-органы из амниотической жидкости человека 15.03.2024

Международная команда ученых под руководством профессора Фань Сюлиня из Университета Чжэцзян разработала уникальный способ выращивания мини-органов из клеток, обнаруженных в амниотической жидкости человека. Этот значительный прорыв в медицине может привести к улучшению диагностики и лечения врожденных заболеваний. Органоиды, представляющие собой трехмерные клеточные структуры, имитирующие органы в меньшем масштабе, были выращены из клеток легких, почек и тонкого кишечника, найденных в амниотической жидкости. Этот метод открывает новые возможности для изучения различных состояний плода и может стать ключом к ранней диагностике и лечению врожденных дефектов. Хотя пока не проводились попытки использования этого метода в лечении, ученые надеются, что их исследования в будущем помогут бороться с серьезными врожденными заболеваниями, которые затрагивают миллионы новорожденных ежегодно. Этот прорыв может изменить практику медицинских вмешательств, позволяя диагностировать и лечить врожд ...>>

Случайная новость из Архива

DC-контакторы TE Connectivity IHVA150 и IHVA200 28.07.2021

Новые DC-контакторы IHVA150 и IHVA200 от TE Connectivity - это инновационное решение, отвечающее высоким современным требованиям к электротранспорту, станциям электрозарядки, системам накопления энергии и другим высоковольтным применениям.

Отличительной особенностью серии IHVA является уход от газовой конструкции с целью увеличения надежности, производительности и обеспечения общей безопасности использования контактора. Контакторы IHVA используют систему дугогашения, при которой коммутационная износостойкость достигает 6000 циклов при постоянном токе 150 А, 110 В (IHVA150) и 5000 циклов при постоянном токе 200 А, 110 В (IHVA200).

Контакторы IHVA реализуются в двух исполнениях контактной группы: нормально открытая (версия A) и нормально открытая со вспомогательным контактом (версия H), который выполняет функцию индикации состояния основного контакта.

К прочим преимуществам серий IHVA стоит отнести:

Поддержка неполярного подключения для более удобного и быстрого монтажа;
Увеличенный воздушный зазор/расстояние утечки: 14/25 мм;
Дополнительная защита цепи за счет пускового тока 600А;
Соответствие требованиям cULus E58304, UL 60947, CCC.

Другие интересные новости:

▪ Генетически модифицированный опоссум

▪ Робот-ленивец

▪ Профессиональный 32" 4K-монитор ASUS PA328Q

▪ Зафиксировано снижение вибрации Земли

▪ Двигатель из молекул

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Прошивки. Подборка статей

▪ статья Уолтер Бэджет. Знаменитые афоризмы

▪ статья Где больше всего диких верблюдов? Подробный ответ

▪ статья Станочник шпалопильного станка. Типовая инструкция по охране труда

▪ статья Автосигнализация Сигнал-003. Энциклопедия радиоэлектроники и электротехники

▪ статья Международные телевизионные стандарты. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024