Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Устройство ограничения пускового тока электроприбора. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Защита аппаратуры от аварийных режимов работы сети

Комментарии к статье Комментарии к статье

Схема ограничителя показана на рис. 1. Он представляет собой переработку ранее разработанного и описанного в [1] устройства. Применение более современной элементной базы и несколько иной подход к проблеме позволили увеличить мощность защищаемой нагрузки, значительно уменьшить энергетические потери, повысить надежность и уменьшить габариты прибора.

Устройство ограничения пускового тока электроприбора
Рис. 1

При замыкании контактов выключателя SA1 конденсатор С2 быстро заряжается через резисторы R1, R2 и диоды VD1, VD2. Напряжение на этом конденсаторе ограничено стабилитроном VD3 до 15 В. Полевой транзистор VT1 открывается. Как только пропорциональное току нагрузки падение напряжения на резисторах R4 и R5 достигнет (с учетом сглаживающего действия конденсатора С4, цепи R6C3 и положения движка подстроечного резистора R7) значения, достаточного для открывания тринистора VS1, последний откроется. Это приведет к резкому уменьшению напряжения на затворе полевого транзистора VT1, он закроется, обесточив нагрузку.

Однако в конце текущего и начале следующего полупериода сетевого напряжения ток через тринистор прекратится и он закроется, предоставив конденсатору С2 зарядиться вновь, а транзистору VT1 - открыться. Далее процесс повторяется, однако в каждом следующем полупериоде сопротивление разогревающейся или разгоняющейся нагрузки становится больше, чем в предыдущем, и время, необходимое для достижения порога открывания тринистора, увеличивается. В конце концов, амплитуда импульсов напряжения на резисторах R4, R5 становится недостаточной для открывания тринистора, и он остается закрытым постоянно. Это установившийся режим работы ограничителя, при котором транзистор VT1 все время открыт, а нагрузка работает в номинальном режиме. Варистор RU1 защищает транзистор от повреждения импульсами высокого напряжения, источником которых могут быть как сеть питания, так и индуктивная нагрузка, например, обмотка трансформатора.

В отличие от некоторых других устройств [2] предлагаемое не может быть включено в разрыв одного из проводов питания нагрузки. Я не считаю это недостатком, поскольку вместо того, чтобы устанавливать защитное устройство рядом с выключателем, где доступ ко второму сетевому проводу затруднен, его легко можно смонтировать там, где присутствуют оба провода: в основании люстры, в корпусе светильника или другого защищаемого электроприбора.

Поскольку в ограничителе отсутствуют инерционные элементы (времязадающие конденсаторы, терморезисторы), оно готово к повторному плавному включению нагрузки сразу же после выключения. Другая особенность - работа полевого транзистора VT1 в ключевом режиме как во время пуска, так и в установившемся режиме работы нагрузки. Поэтому рассеиваемая этим транзистором мощность невелика, что значительно повышает надежность устройства.

При указанных на схеме номиналах резисторов R4, R5 ограничитель работает с лампами накаливания суммарной мощностью 25... 120 Вт в качестве нагрузки.

Устройство ограничения пускового тока электроприбора
Рис. 2

Все детали смонтированы навесным способом на круглой плате диаметром 50 мм (рис. 2). Ее можно легко разместить в большинстве подвесных и настенных светильников. Полевой транзистор IRF840 можно заменить, например, BUZ40B, IRFP4S2, IRF450, TSD2M450V или другими n-канальными полевыми транзисторами с предельным напряжением сток-исток не менее 500 В и сопротивлением открытого канала не более 1 Ом. Между платой и расположенным параллельно ей корпусом транзистора необходим воздушный зазор 2...3 мм для циркуляции воздуха. Вместо тринистора КУ112А подойдет другой маломощный из серий КУ107, MCR100, а вместо диодов 1N4006 - любые на ток не менее 1 А и напряжение более 400 В, например, КД243Ж, КД247Г, КД258В. Стабилитрон может быть не только 1N4744A, но и КС215Ж, КС515Г, TZMC-15, BZX/BZV55C15 или другой на 15 В.

В качестве С1 автор использовал малогабаритный импортный конденсатор на напряжение 250 В переменного тока. Оксидный конденсатор С4 - малогабаритный для поверхностного монтажа, но допустимо установить здесь и оксидный конденсатор обычной конструкции. Остальные - малогабаритные пленочные или керамические с малым ТКЕ. Подстроечный резистор R7 - импортный закрытой конструкции. Часто используемые радиолюбителями подстроечные резисторы СПЗ-38 непригодны, их надежность слишком низка. Варистор TNR10G561 можно заменить другим с классификационным напряжением 560 В -FNR-10K561, FNR-14K561.

Если работать с нагрузками мощностью менее 75 Вт не предполагается, номиналы резисторов R4 и R5 желательно уменьшить до 1 Ом. Можно установить вместо двух резисторов один вдвое большей мощности. Резисторы еще меньшего номинала и большей мощности придется установить для работы с нагрузкой мощностью более 120 Вт. В этом случае необходима замена более мощными также диодов VD4- VD7 и полевого транзистора VT1. Несколько однотипных полевых транзисторов допускается соединить параллельно, обязательно установив их на общем теплоотводе. Для работы с мощной нагрузкой монтаж устройства следует сделать менее плотным, а плату поместить в корпус с хорошей вентиляцией.

Налаживать ограничитель следует именно с тем электроприбором, для защиты которого его предполагается в дальнейшем использовать, и при номинальном или слегка повышенном напряжении в сети. Если нагрузка - лампа накаливания, она должна быть новой, не подвергавшейся длительной эксплуатации.

Перед первым включением движок подстроечного резистора R7 устанавливают в правое по схеме положение. После включения питания движок очень медленно перемещают, пока лампа не начнет разгораться. При правильной регулировке лампа достигает полной яркости через 2...3 с после включения. Причем более половины этого времени ее свечения видно не будет. Следует заметить, что чем мощнее лампа, тем дольше и плавнее она зажигается.

Если ограничитель настроить на работу с лампой мощностью, например, 100 Вт, а затем подключить параллельно ей еще одну мощностью всего 15 Вт, то при включении обе лампы не зажгутся. Эту особенность можно использовать для предотвращения повреждения светильника при случайной установке в него лампы мощностью больше допустимой. Например, многие настольные светильники рассчитаны лишь на лампы накаливания мощностью не более 60 Вт. Такие же по размеру лампы мощностью 100...150 Вт при установке в подобный светильник перегревают его пластмассовые детали вплоть до плавления и деформации.

Литература

  1. Бутов А. Устройство защиты маломощных ламп накаливания. - Радио, 2004, № 2, с. 44, 45.
  2. Нечаев И. Автомат плавного включения ламп накаливания. - Радио, 2005, № 1, с. 41.

Автор: А. Бутов, с. Курба Ярославской обл.; Публикация: radioradar.net

Смотрите другие статьи раздела Защита аппаратуры от аварийных режимов работы сети.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Использование Apple Vision Pro во время операций 16.03.2024

Медицинская команда больницы Кромвеля в Лондоне впервые применила Apple Vision Pro в ходе двух операций на позвоночнике. Это событие подтверждает потенциал гарнитуры в качестве медицинского инструмента, изменяющего подход к хирургической практике. Хотя сами врачи не использовали Vision Pro, операционная медсестра работала с виртуальной реальностью, используя очки во время подготовки и выполнения процедур. Гарнитура позволила просматривать виртуальные экраны в операционной, выбирать инструменты и следить за ходом операции. Программное обеспечение, разработанное компанией eXeX, специализирующейся на создании приложений на основе искусственного интеллекта для хирургии, существенно улучшило процесс оказания медицинской помощи пациентам. Использование Apple Vision Pro открывает новые возможности для разработки приложений в сфере здравоохранения, таких как клиническое образование, планирование операций, обучение и медицинская визуализация. Внедрение Apple Vision Pro в медицинскую пр ...>>

Хранение углерода в Северное море 16.03.2024

Министр энергетики Норвегии Терье Осланд объявил о запуске проекта Longship, нацеленного на создание центрального хранилища углекислого газа в Северном море. Этот амбициозный проект оценивается в $2,6 млрд и направлен на применение технологии CCS (углеродного захвата и хранения) для смягчения воздействия климатических изменений. Норвегия уже имеет опыт в области CCS благодаря успешным проектам Sleipner и Snohvit, и сейчас стремится увеличить объем углерода, запечатываемого под морским дном. План Longship предусматривает создание мощности по захвату и хранению 1,5 млн. тонн углерода ежегодно в течение 25 лет. Несмотря на позитивные перспективы, существуют опасения по поводу долгосрочных последствий такого хранения. Однако сторонники проекта утверждают, что морское хранение углерода имеет ряд преимуществ, включая минимальное воздействие на окружающую среду. Проект Longship осуществляется при участии компаний Equinor, Shell и TotalEnergies через совместное предприятие Northern Li ...>>

Выращены мини-органы из амниотической жидкости человека 15.03.2024

Международная команда ученых под руководством профессора Фань Сюлиня из Университета Чжэцзян разработала уникальный способ выращивания мини-органов из клеток, обнаруженных в амниотической жидкости человека. Этот значительный прорыв в медицине может привести к улучшению диагностики и лечения врожденных заболеваний. Органоиды, представляющие собой трехмерные клеточные структуры, имитирующие органы в меньшем масштабе, были выращены из клеток легких, почек и тонкого кишечника, найденных в амниотической жидкости. Этот метод открывает новые возможности для изучения различных состояний плода и может стать ключом к ранней диагностике и лечению врожденных дефектов. Хотя пока не проводились попытки использования этого метода в лечении, ученые надеются, что их исследования в будущем помогут бороться с серьезными врожденными заболеваниями, которые затрагивают миллионы новорожденных ежегодно. Этот прорыв может изменить практику медицинских вмешательств, позволяя диагностировать и лечить врожд ...>>

Случайная новость из Архива

Вибротерапия помогает от диабета 04.11.2012

Найдено средство борьбы с начальной стадией диабета у подростков. Справляться с высоким уровнем глюкозы в крови, а также сухостью во рту поможет ежедневный курс вибраций. Так сообщили в своем докладе исследователи из медицинского колледжа штата Джорджии.

Эксперимент проводился на мышах, чье состояние имитировало среднее состояние американского подростка - постоянно переедающего и движущегося прямым путем к заболеванию диабетом. В течение 8 недель переедающих мышей подвергали ежедневной 20-минутной вибрации. Таким образом удалось восстановить здоровый баланс ключевых про- и антивоспалительных медиаторов в их организме. Результат оказался лучше, чем даже при лечении обычными в таких случаях лекарствами. Организм обычных мышей всего за четыре первых дня курса стал гораздо лучше справляться с резкими повышениями уровня глюкозы, которые случаются от жирной, калорийной пищи. Любопытно, что вибрация хорошо помогает молодым мышкам, но не так воздействует на взрослых и старых мышей.

"Это очень хороший знак, - говорит доктор Джек Ю, начальник отдела пластической и реконструктивной хирургии в медицинском колледже Джорджии. - Если вы съедите фунт сахара, уровень глюкозы в крови подскочит. Если у вас начинается диабет, он подскочит еще больше. Возможность управлять этими скачками обещает благоприятно сказаться на здоровье пациентов. Наша стандартная модель - средний американский подросток, который слишком много ест. Единственный способ сжечь жир - это заставить его тренироваться. Но теперь мы просто можем встряхнуть его кости, и мышцам не придется работать. Это очень эффективный способ обмануть организм, заставить его думать, что он совершает физическую нагрузку".

Данная модель особенно эффективна с учетом грустной реальности - большинство людей не желает заниматься спортом. В то же время доктор Ю говорит, что пока до конца неясно, как именно вибрация приводит к желаемым результатам. Похоже, что это связано с воздействием тряски на здоровье костей. Вибрация имитирует движение костей во время тренировки, когда работу толкателя выполняют мышцы. В результате организм производит остеокальцин. Этот белок способствует укреплению костей, но он же подает поджелудочной железе сигнал о том, чтобы приготовиться к пище. Для человечества в целом эта схема была эффективна много веков назад, когда доисторические охотники гнались за своей добычей, настигали ее и могли вдоволь попировать. Но в наше время люди двигаются слишком мало, а едят много, поэтому схема редко работает.

Кроме того, наш организм пытается удержать побольше жира, чтобы получить больше энергии. Это является главной причиной хронических воспалений, связанных с ожирением и сахарным диабетом 2-го типа. Жир провоцирует воспалительные факторы, а иммунная система может по ошибке принять сам жир за воспаление и отреагировать на него. И, к сожалению, это не поможет его устранить. А вибрации воздействуют и на этот механизм, заметно устраняя несбалансированность в организме. Также вибрации значительно уменьшают симптом чрезмерной жажды.

Другие интересные новости:

▪ Влияние мобильных телефонов на обучение

▪ Муравьи умеют предсказывать землетрясения

▪ Искусственные нервы

▪ Искусственная мышца

▪ Однокристальный контроллер SM2320 для портативных внешних SSD

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Зарядные устройства, аккумуляторы, батарейки. Подборка статей

▪ статья Макс Эрнст. Знаменитые афоризмы

▪ статья За что английский король Ричард I получил прозвище Львиное Сердце? Подробный ответ

▪ статья Боярышник сибирский. Легенды, выращивание, способы применения

▪ статья Автоматическое зарядное устройство для автомобильных свинцово-кислотных аккумуляторов. Энциклопедия радиоэлектроники и электротехники

▪ статья Столы фокусника. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024