Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Полупроводниковые солнечные батареи. Справочные данные

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Справочные материалы

 Комментарии к статье

Полупроводниковый р-n переход, способный преобразовывать падающее на него световое излучение в электрический ток, называют фотоэлементом. Если несколько фотоэлементов электрически и механически объединить для совместной работы в качестве источника электроэнергии, получим солнечную батарею.

Основные материалы, используемые для изготовления фотоэлементов, - кремний и арсенид галлия. GaAs обеспечивает более высокий КПД фотопреобразования - до 22 % (у Si - около 17 %), но он существенно дороже кремния. К тому же производство кремния в настоящее время освоено наиболее хорошо. По этим причинам он и является основным материалом для изготовления солнечных батарей.

Под действием света на р-n переход области р и n полупроводника приобретают разнополярные заряды, из-за чего на выводах фотоэлемента появляется напряжение холостого хода. Если к выводам подключить внешнюю цепь с нагрузкой, через нагрузку и фотоэлемент потечет ток, напряжение уменьшится, а при замыкании выводов через фотоэлемент будет течь ток замыкания.

Оптимальным будет такой режим, когда на нагрузке выделяется максимальная мощность. Этому режиму соответствуют рабочее напряжение на нагрузке и рабочий ток через нее.

Конструктивно солнечная батарея представляет собой плоскую панель, состоящую из размещенных вплотную фотоэлементов и электрических соединений, защищенную с лицевой стороны прозрачным твердым покрытием. Число фотоэлементов в батарее может быть различным, от нескольких десятков до нескольких тысяч. Площадь панели у больших промышленных солнечных батарей может достигать тысячи квадратных метров, а максимальная генерируемая мощность - десятков киловатт.

Небольшие солнечные батареи могут служить источниками энергии для зарядки аккумуляторов, работы электродвигателей различного назначения, питания осветительных приборов и радиоэлектронной аппаратуры в полевых условиях. Особенно эффективны эти батареи в регионах с относительно большим числом солнечных дней в году.

В настоящее время общемировая мощность, вырабатываемая солнечными установками, равна 200 МВт при суммарной площади батарей в 2 млн м2.

Ведущие позиции на мировом рынке производства солнечных батарей занимают Япония, Германия и США, которые производят до 70 % всей продукции.

Ниже помещены характеристики некоторых серийных отечественных солнечных установок различного назначения.

Кроме этих установок, предназначенных для решения конкретных задач, отечественная промышленность выпускает ряд солнечных модулей, из которых можно собирать, как из конструктора, источники электрической энергии самой различной мощности. Соответствующей коммутацией модулей можно изменять рабочее напряжение на нагрузке. Параметры модулей сведены в таблицу.

Полупроводниковые солнечные батареи

ОСБ

Ориентируемая солнечная батарея ОСБ состоит из двух одинаковых панелей и гидромеханического устройства, обеспечивающего установку панелей в положение максимального облучения солнцем. Батарея смонтирована на устойчивой подставке.

Полупроводниковые солнечные батареи

Установка предназначена для зарядки аккумуляторных батарей с номинальным напряжением 12 В и питания радиоэлектронной аппаратуры.

  • Номинальная мощность, Вт.....80
  • Рабочее напряжение на нагрузке, В.....16,5
  • Номинальный поток солнечной энергии, падающий на фоточувствительную поверхность, Вт/м2.....1000
  • Площадь фоточувствительной поверхности одной панели, м.....0,42
  • Масса батареи, кг.....16
  • Рабочий интервал температуры окружающей среды, °С.....-60...+80

БСП-10

Батарея солнечная переключаемая БСП-10 оснащена устройством, позволяющим путем коммутации групп солнечных элементов получать различные значения рабочего напряжения. Рассчитана на питание измерительной и другой радиоэлектронной аппаратуры.

Полупроводниковые солнечные батареи

  • Номинальная мощность, Вт.....10
  • Рабочее напряжение на нагрузке, В.....4,5; 6; 9; 10,5; 12
  • Номинальный поток солнечной энергии, падающий на фоточувствительную поверхность, Вт/м2.....1000
  • Площадь фоточувствительной поверхности, см2.....1000
  • Масса батареи, кг.....2,8
  • Рабочий интервал температуры окружающей среды,°С.....-40...+80

СЭФУ

Система энергообеспечения фотоэлектрическая универсальная СЭФУ состоит из 15 солнечных панелей, установленных на подставке, и подключенной к ним буферной аккумуляторной батареи. Система предназначена для питания аппаратуры для стрижки овец, зарядки внешних аккумуляторных батарей и бытового электрообеспечения в условиях отдаленных пастбищ. Система может работать в двух режимах.

Полупроводниковые солнечные батареи

  • Номинальная мощность, Вт, в режиме питания стригальной машины.....250
  • зарядки внешних аккумуляторных батарей.....200
  • Рабочее напряжение на нагрузке, В, в режиме питания стригальной машины.....41
  • зарядки внешних аккумуляторных батарей 16,5
  • Номинальный поток солнеч­ной энергии, падающий на фоточувствительную поверхность панелей, Вт/м2.....1000
  • Общая площадь фоточувствительной поверхности системы, м2.....2,2
  • Масса фотоэлектрической батареи, кг.....36
  • Рабочий интервал температуры окружающей среды, °С.....-60...+80

ПСЭ

Переносная солнечная электростанция ПСЭ состоит из двух или четырех панелей, шарнирно скрепленных между собой таким образом, что могут быть компактно сложены в походную сумку. Станция предназначена для электропитания радиоаппаратуры и измерительных приборов в туристических походах, геологических партиях, альпинистских лагерях.

  • Номинальная мощность, Вт, в исполнении с двумя панелями 50 с четырьмя панелями.....100
  • Рабочее напряжение на нагрузке, В.....12,5±2
  • Номинальный поток солнечной энергии, падающий на фоточувствительную поверхность панелей, Вт/м2.....1000
  • Площадь фоточувствительной поверхности одной.....0,26
  • Масса электростанции, кг двупанельной.....3,8
  • четырехпанельной.....6,8
  • Рабочий интервал температуры окружающей среды,°С.....60...+80

ФЭС-60

Фотоэлектрическая станция ФЭС-60 представляет собой две фоточувствительные панели, установленные на жесткой подставке. Станция предназначена для электропитания механизмов откачки меда, водяного насоса, бытовых электроприборов и приемопередающей аппаратуры в условиях выездной пасеки.

  • Номинальная мощность, Вт.....80
  • Рабочее напряжение на нагрузке, В.....12
  • Номинальный поток солнечной энергии, падающей на фоточувствительную поверхность, Вт/м2.....600
  • Номинальная производительность насоса при подъеме воды на высоту 7 м, м3/ч.....0,5
  • Площадь фоточувствительной поверхности панелей, м2.....0,84
  • Масса станции, кг.....35
  • Рабочий интервал температуры окружающей среды, °С.....-40...+70

Автор: А.Юшин, г.Москва

Смотрите другие статьи раздела Справочные материалы.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Использование Apple Vision Pro во время операций 16.03.2024

Медицинская команда больницы Кромвеля в Лондоне впервые применила Apple Vision Pro в ходе двух операций на позвоночнике. Это событие подтверждает потенциал гарнитуры в качестве медицинского инструмента, изменяющего подход к хирургической практике. Хотя сами врачи не использовали Vision Pro, операционная медсестра работала с виртуальной реальностью, используя очки во время подготовки и выполнения процедур. Гарнитура позволила просматривать виртуальные экраны в операционной, выбирать инструменты и следить за ходом операции. Программное обеспечение, разработанное компанией eXeX, специализирующейся на создании приложений на основе искусственного интеллекта для хирургии, существенно улучшило процесс оказания медицинской помощи пациентам. Использование Apple Vision Pro открывает новые возможности для разработки приложений в сфере здравоохранения, таких как клиническое образование, планирование операций, обучение и медицинская визуализация. Внедрение Apple Vision Pro в медицинскую пр ...>>

Хранение углерода в Северное море 16.03.2024

Министр энергетики Норвегии Терье Осланд объявил о запуске проекта Longship, нацеленного на создание центрального хранилища углекислого газа в Северном море. Этот амбициозный проект оценивается в $2,6 млрд и направлен на применение технологии CCS (углеродного захвата и хранения) для смягчения воздействия климатических изменений. Норвегия уже имеет опыт в области CCS благодаря успешным проектам Sleipner и Snohvit, и сейчас стремится увеличить объем углерода, запечатываемого под морским дном. План Longship предусматривает создание мощности по захвату и хранению 1,5 млн. тонн углерода ежегодно в течение 25 лет. Несмотря на позитивные перспективы, существуют опасения по поводу долгосрочных последствий такого хранения. Однако сторонники проекта утверждают, что морское хранение углерода имеет ряд преимуществ, включая минимальное воздействие на окружающую среду. Проект Longship осуществляется при участии компаний Equinor, Shell и TotalEnergies через совместное предприятие Northern Li ...>>

Выращены мини-органы из амниотической жидкости человека 15.03.2024

Международная команда ученых под руководством профессора Фань Сюлиня из Университета Чжэцзян разработала уникальный способ выращивания мини-органов из клеток, обнаруженных в амниотической жидкости человека. Этот значительный прорыв в медицине может привести к улучшению диагностики и лечения врожденных заболеваний. Органоиды, представляющие собой трехмерные клеточные структуры, имитирующие органы в меньшем масштабе, были выращены из клеток легких, почек и тонкого кишечника, найденных в амниотической жидкости. Этот метод открывает новые возможности для изучения различных состояний плода и может стать ключом к ранней диагностике и лечению врожденных дефектов. Хотя пока не проводились попытки использования этого метода в лечении, ученые надеются, что их исследования в будущем помогут бороться с серьезными врожденными заболеваниями, которые затрагивают миллионы новорожденных ежегодно. Этот прорыв может изменить практику медицинских вмешательств, позволяя диагностировать и лечить врожд ...>>

Случайная новость из Архива

Переработка пластика в топливо и воск 02.01.2021

Ученые из Японии создали новый катализатор для переработки обычного пластика в полезные продукты, такие как топливо и воск.

Пластмассы по своей конструкции чрезвычайно устойчивы к химическим реакциям. Благодаря этому они отлично подходят для бутылок и контейнеров для химикатов. Но с другой стороны, именно из-за этого пластик крайне сложно переработать. Например, процесс термической переработки требует температуры от 300 до 900 градусов по Цельсию, на что уходит очень много энергии.

В новом же исследовании ученые из Японии решили найти катализатор, который мог бы разрушать пластик при более низких температурах. Команда обнаружила, что объединение рутения и диоксида церия создает катализатор, способный перерабатывать полиолефиновые пластмассы при температура всего 200 градусов по Цельсию.

"Наш подход оказался более эффективным, чем катализаторы на металлической основе. Кроме этого, полиэтиленовые пакеты и пластиковые отходы могут быть переработаны в ценные химические вещества", - говорят соавторы исследования Масадзуми Тамура и Кейити Томишиге.

Исследователи говорят, что им удалось преобразовать около 92% пластиковых отходов в полезные материалы, из которых 77% превратили в жидкое топливо, а 15% - в воск.

Другие интересные новости:

▪ Пластик из картофеля

▪ Опьянение без алкоголя

▪ Лечение герпеса инфракрасным светом

▪ Нейрон размером с мозг

▪ Выращивание человеческих почек

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Устройства защитного отключения. Подборка статей

▪ статья Айседора Дункан. Знаменитые афоризмы

▪ статья Почему мы называем черно-желтых птиц синицами? Подробный ответ

▪ статья Ячмень мышиный. Легенды, выращивание, способы применения

▪ статья Триггер на транзисторной оптопаре. Энциклопедия радиоэлектроники и электротехники

▪ статья Третья рука. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024