Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Микросхемы для радиомодемов. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Гражданская радиосвязь

Комментарии к статье Комментарии к статье

Передача данных по радиоканалу на небольшие расстояния получает все большее распространение в быту. Обычными стали уже "радиоключи" для автомобильной сигнализации и дистанционного управления различными объектами, завоевывают популярность "радиомыши" и "радиоклавиатуры" компьютеров и т. п. Пришло время и для беспроводного объединения компьютеров в сеть. Эта статья познакомит читателей со специализированными микросхемами, предназначенными для решения таких задач.

Еще недавно каждый, впервые увидевший "тыльную" сторону системного блока действующего компьютера, был поражен паутиной присоединенных к нему проводов и кабелей, которые шли к немалому числу взаимодействующих с компьютером устройств. Внедрение шины USB, обходящей все устройства последовательно, упрощает кабельную сеть, но не решает проблему окончательно.

Попытки применить для связи между компьютером и его периферией инфракрасное излучение не имеют большого успеха, так как между источником и приемником ИК-лучей обязательна прямая видимость, а реальная дальность надежной связи не превышает двух метров. К тому же конкурирующими производителями аппаратуры так и не выработан единый протокол обмена данными. Поэтому наличие в вашем компьютере адаптера IrDA еще не гарантирует возможности связаться с его помощью с любым из оборудованных IrDA устройств.

В последнее время все большее развитие получает идея организовать "ближнюю" связь между компьютерами, находящимися в одном или соседних помещениях, и взаимодействующими с ними устройствами (принтерами, сканерами, модемами и т. п.) по радиоканалу. Однако при кажущейся простоте и очевидности такого подхода трудностей на пути его реализации так много, что проблему до сих пор нельзя считать решенной. По крайней мере, до провозглашенной некоторыми разработчиками цели "добавляем в каждый компьютер и периферийное устройство по одной микросхеме - и дело в шляпе" еще очень далеко.

Тем не менее "процесс пошел". Делаются попытки выработать единые технологии и протоколы "локальной" компьютерной радиосвязи. Самые известные из них Bluetooth, IEEE 802.11, UWB и Номе RF конкурируют между собой. Выявить победителя, оценив на практике декларируемые достоинства и недостатки предлагаемых технологий, предстоит в недалеком будущем. А пока производители обязательных для связи по любому протоколу узлов - микросхем СВЧ приемопередатчиков (трансиверов) - ориентируясь на один из протоколов, тем не менее закладывают возможность использования и других. В этой статье мы расскажем о некоторых из этих микросхем.

Норвежская фирма BlueChip Communications AS <bluechip.no> выпускает однокристальные микросхемы радиотрансиверов ВСС418 и ВСС918, которые характеризуются микромощным потреблением энергии, возможностью работы в широком диапазоне температур (от -40 до +85 °С) и предназначены, главным образом, для обмена цифровыми данными в радиосетях диапазонов 400 и 900 МГц. Основные области применения этих трансиверов - дистанционные датчики, используемые в промышленности, в системах безопасности и в медицине. Кроме того, они могут быть использованы в системах мониторинга окружающей среды, в низкоскоростных компьютерных радиосетях, в дистанционных считывателях штрих-кодов, в двунаправленном пейджинге и т. п.

Микросхемы подобны по внутренней структуре и параметрам, выпускаются в пластмассовых корпусах TQFP-44 (размеры 12x12 мм) с четырехсторонним расположением выводов и различаются лишь тем, что ВСС418 перекрывает диапазон 300..600 МГц, а ВСС918 - 700..1100 МГц.

Рабочую частоту и другие режимы работы микросхем трансиверов устанавливают с помощью 80-битовой команды, заносимой последовательным двоичным кодом в специальный регистр микросхемы.

Для обеспечения гибкости применения этих микросхем предусмотрена возможность программирования восьми уровней выходной мощности передатчика (интервал - 3 дБ, максимальный уровень - 10 мВт), двух (для ВСС418) или четырех (для ВСС918) значений коэффициента усиления входных каскадов приемника (позволяет снижать чувствительность на 25..33 дБ), а также четырех значений полосы пропускания ФНЧ (10, 30, 60 или 200 кГц).

В качестве других особенностей построения данных трансиверов можно отметить использование в приемнике метода прямого преобразования частоты, наличие двухканального синтезатора частоты с внешней петлей ФАПЧ, обеспечивающего весьма густую сетку частот (сотни герц), выходы детектора захвата LockDet и уровня принимаемого сигнала RSSI, а также встроенный перестраиваемый семиполюсный эллиптический гираторный ФНЧ приемника.

Для передачи информации применяется частотная манипуляция несущей (FSK) с девиацией, которую выбирают в соответствии с требуемой скоростью приема/передачи данных. Максимальная скорость передачи, поддерживаемая микросхемами трансиверов ВСС, составляет 128 кБод. Для скоростей 9,6 кБод и менее рекомендуемая девиация - ±25 кГц. При чувствительности приемника -105 дБм и ненаправленных антеннах это гарантирует дальность связи на открытом пространстве до 700 м. Номинальное напряжение питания - 3 В. Потребляемый ток в режиме передачи - не более 50 мА, в режиме приема - 8 мА, в режиме ожидания - менее 2 мкА.

Задающим генератором передатчика и гетеродином приемника служит синтезатор частоты, состоящий из генератора, управляемого напряжением (VCO), двух программируемых делителей частоты и петли ФАПЧ (PLL). Для стабилизации частоты синтезатора рекомендовано использование высококачественного кварцевого резонатора с частотой 10 МГц.

В микросхемах трансиверов ВСС, в зависимости от требуемой скорости передачи данных, заложена возможность использования одного из четырех способов манипулирования частоты передатчика - путем изменения коэффициента деления одного из счетчиков синтезатора, переключением между двумя запрограммированными делителями частоты, модуляция (затягивание) частоты опорного кварцевого резонатора или непосредственная модуляция VCO.

Приемная часть выполнена по схеме прямого преобразования частоты и содержит цифровой частотный детектор. Демодуляция производится сравнением фаз принятого сигнала в синфазном I и квадратурном Q каналах. Если в канале I она отстает от Q, частота сигнала выше частоты гетеродина, если опережает - ниже ее. Присущий таким схемам так называемый "джиттер" (дрожание фронта) принимаемых данных, как правило, не создает каких-либо проблем при приеме цифровых данных, однако его величину необходимо учитывать в случаях, когда важен момент прихода фронта сигнала. Джиттер уменьшается с увеличением девиации частоты ΔF, при этом его максимальное значение не превышает 1/(4ΔF).

Система ФАПЧ настраивает гетеродин на среднюю частоту сигнала, поэтому в передаваемой кодовой последовательности во избежание сбоев должно содержаться равное число логических нулей и единиц. Это обычное для цифровых систем связи требование обязательно учитывают при выборе способа кодирования передаваемых данных. Фирма BlueChip Communications рекомендует для этой цели использовать Манчестерский или ЗВ4В блочный код.

Для контроля работы ФАПЧ в тран-сиверах ВСС имеется возможность использования специально предусмотренного выхода LockDet - детектора захвата.

Постоянное напряжение на выходе RSSI пропорционально логарифму мощности сигнала на входе приемника, причем эта зависимость сохраняется в динамическом диапазоне порядка 70 дБ.

Типовая схема включения микросхемы ВСС418 показана на рис. 1. Варикап D1 и его окружение - элементы VCO и ФАПЧ. Кварцевый резонатор ZQ1, как уже говорилось, задает образцовую частоту. Катушки индуктивности и большинство конденсаторов в правой части схемы входят в СВЧ цепи согласования входа и выхода приемопередатчика с антенной WA1. Цепь R15D3L3D2 служит для коммутации антенны к входу приемника или выходу передатчика микросхемы трансивера.

Микросхемы для радиомодемов
(нажмите для увеличения)

На базе микросхем ВСС418 и ВСС918 выпускают СВЧ модули RFB433, RFB868 и RFB915, построенные по схемам, подобным рассмотренной выше (рис.1). Они имеют размеры приблизительно 25x25x3 мм и выводы, приспособленные для поверхностного монтажа. Модули оптимизированы (настроены производителем) на скорость передачи 19,2 кБод и работу соответственно в ISM-диапазонах 433,4...434,4 МГц, 868,8...869 МГц и 903...927 МГц, при этом они могут работать и в более широком диапазоне частот. Согласованную антенну (с волновым сопротивлением фидера 50... 100 Ом) к модулям можно подключать непосредственно, без дополнительных СВЧ элементов. Аббревиатурой ISM принято обозначать диапазоны, предназначенные для работы на излучение аппаратуры промышленного (Industrial), научного (Scientific) и медицинского (Medical) назначения. В Европе и США какая-либо лицензия для работы в этих диапазонах не требуется.

Фирма BlueChip Communications предлагает разработчикам аппаратуры отладочные платы (Evaluation Kits, комплект состоит из 2 шт.), содержащие СВЧ модуль, печатную антенну и микроконтроллер PIC16LC63A. Воспользовавшись прилагаемым к платам программным обеспечением, можно организовать двустороннюю передачу данных между двумя компьютерами, удаленными на расстояние до 300 м. Одной из последних разработок фирмы является радиомодем MOD433, подключаемый по интерфейсу RS232 к СОМ-порту компьютера, к источнику питания 6..9 В и к внешней согласованной антенне. Радиомодем настроен на скорость передачи данных 19,2 кБод и использует десять рабочих частот в диапазоне 433,4...434,4 МГц, автоматически сканируемых с темпом 100 мс.

Приемопередатчики ISM-диапазона выпускают и другие фирмы. Например, Texas Instrument <ti.com> изготавливает микросхемы TRF6900 и TRF6901 в корпусе PQFP-48. Первая из них перекрывает полосу частот 850...950 МГц, вторая - 860...930 МГц. Мощность передатчика - 3 мВт, коэффициент шума приемника - 3,3 дБ. Внешний цифровой интерфейс приемопередатчиков ориентирован на микроконтроллер MSP430 той же фирмы.

Не осталась в стороне известная своими микросхемами памяти и микроконтроллерами американская фирма Atmel Corporation <atmel.com>. Вступив в ассоциацию Bluetooth (кстати, название произошло от прозвища короля Харальда, правившего Данией и Норвегией в X веке), она разработала ряд микросхем в поддержку этого протокола. Самая сложная из них - контроллер протокола АТ76С511. Достаточно сказать, что он выполнен в 176-выводном корпусе, содержит 32-разрядное вычислительное RISC-ядро ARM7TDMI, а для выполнения всех предусмотренных Bluetooth функций требует 256 Кбайт внешней оперативной и столько же FLASH или другой энергонезависимой памяти.

Для связи с компьютером микросхема АТ76С511 снабжена тремя различными интерфейсами: USB, PCMCIA и эмулятором UART 16550. В дальнейшем планируется выпускать упрощенные варианты, каждый из которых будет лишь с одним интерфейсом.

Контроллер организует радиосвязь, "командуя" СВЧ-модулем - микросхемой Т2901 той же фирмы. Связь ведется на 79 фиксированных частотах в диапазоне 2400...2500 МГц. Согласно протоколу Bluetooth, рабочая частота изменяется скачком каждые 625 мкс, причем закон изменения известен установившим связь абонентам, а для других - непредсказуем. В результате два и более канала связи, работая одновременно в одной полосе частот, не мешают друг другу. Редкие сбои, вызванные случайным кратковременным совпадением частот передатчиков, быстро устраняет предусмотренная протоколом многоуровневая система помехоустойчивого кодирования данных и коррекции ошибок. Правда, "чистая" скорость обмена данными 1 Мбит/с в результате снижается приблизительно на 20 %.

Типовая схема включения микросхемы Т2901 приведена на рис. 2, многочисленные блокировочные конденсаторы емкостью 4,7 пФ, подключенные ко всем выводам питания и управления, не показаны. Сигнал образцовой частоты подают на вывод 1 (CLK). Имеется возможность программно выбрать одно из четырех возможных ее значений. Мощность передатчика - 1 мВт. Информацию передают частотной манипуляцией несущей с номинальной девиацией ±160 кГц. Модулирующий сигнал может быть предварительно отфильтрован с помощью встроенного ФНЧ с гауссовой характеристикой. Этот фильтр включают и выключают переключателем SW1.

Микросхемы для радиомодемов
(нажмите для увеличения)

Приемник в данном случае - обычный супергетеродин с промежуточной частотой 111 МГц. Его коэффициент шума - 12 дБ. Избирательность обеспечивает ПАВ-фильтр F1, колебательные контуры с катушками L2 и L3 - элементы УПЧ и частотного дискриминатора. Транзистор Q1 входит в состав внутреннего стабилизатора напряжения питания. Потребляемый микросхемой ток почти не зависит от режима прием/передача, составляя приблизительно 60 мА, и лишь в режиме ожидания уменьшается до десятков микроампер.

Интересная особенность устройства микросхемы Т2901 - сигнал передатчика формируется на удвоенной частоте (4800...5000 МГц), которую перед подачей на выход делят на два. Демодулятор приемника также работает на частоте, вдвое меньшей промежуточной, - 55,5 МГц.

Для увеличения выходной мощности и чувствительности приемопередатчика Т2901 фирма Atmel предлагает дополнительные микросхемы СВЧ усилителя мощности (Т7023) и аналогичного усилителя, объединенного с малошумящим входным (Т7024). Их особенность - наличие специального входа регулировки выходной мощности, что позволяет плавно включать и выключать передатчик, устанавливать минимальный достаточный для поддержания связи уровень мощности излучаемого сигнала. Эти меры минимизируют помехи, создаваемые другим работающим в том же диапазоне каналам связи. Выходная мощность обеих микросхем - 200 мВт, коэффициент шума микросхемы Т7024 - не более 2,3 дБ.

Автор: А.Долгий, г.Москва

Смотрите другие статьи раздела Гражданская радиосвязь.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

<< Назад

Последние новости науки и техники, новинки электроники:

Использование Apple Vision Pro во время операций 16.03.2024

Медицинская команда больницы Кромвеля в Лондоне впервые применила Apple Vision Pro в ходе двух операций на позвоночнике. Это событие подтверждает потенциал гарнитуры в качестве медицинского инструмента, изменяющего подход к хирургической практике. Хотя сами врачи не использовали Vision Pro, операционная медсестра работала с виртуальной реальностью, используя очки во время подготовки и выполнения процедур. Гарнитура позволила просматривать виртуальные экраны в операционной, выбирать инструменты и следить за ходом операции. Программное обеспечение, разработанное компанией eXeX, специализирующейся на создании приложений на основе искусственного интеллекта для хирургии, существенно улучшило процесс оказания медицинской помощи пациентам. Использование Apple Vision Pro открывает новые возможности для разработки приложений в сфере здравоохранения, таких как клиническое образование, планирование операций, обучение и медицинская визуализация. Внедрение Apple Vision Pro в медицинскую пр ...>>

Хранение углерода в Северное море 16.03.2024

Министр энергетики Норвегии Терье Осланд объявил о запуске проекта Longship, нацеленного на создание центрального хранилища углекислого газа в Северном море. Этот амбициозный проект оценивается в $2,6 млрд и направлен на применение технологии CCS (углеродного захвата и хранения) для смягчения воздействия климатических изменений. Норвегия уже имеет опыт в области CCS благодаря успешным проектам Sleipner и Snohvit, и сейчас стремится увеличить объем углерода, запечатываемого под морским дном. План Longship предусматривает создание мощности по захвату и хранению 1,5 млн. тонн углерода ежегодно в течение 25 лет. Несмотря на позитивные перспективы, существуют опасения по поводу долгосрочных последствий такого хранения. Однако сторонники проекта утверждают, что морское хранение углерода имеет ряд преимуществ, включая минимальное воздействие на окружающую среду. Проект Longship осуществляется при участии компаний Equinor, Shell и TotalEnergies через совместное предприятие Northern Li ...>>

Выращены мини-органы из амниотической жидкости человека 15.03.2024

Международная команда ученых под руководством профессора Фань Сюлиня из Университета Чжэцзян разработала уникальный способ выращивания мини-органов из клеток, обнаруженных в амниотической жидкости человека. Этот значительный прорыв в медицине может привести к улучшению диагностики и лечения врожденных заболеваний. Органоиды, представляющие собой трехмерные клеточные структуры, имитирующие органы в меньшем масштабе, были выращены из клеток легких, почек и тонкого кишечника, найденных в амниотической жидкости. Этот метод открывает новые возможности для изучения различных состояний плода и может стать ключом к ранней диагностике и лечению врожденных дефектов. Хотя пока не проводились попытки использования этого метода в лечении, ученые надеются, что их исследования в будущем помогут бороться с серьезными врожденными заболеваниями, которые затрагивают миллионы новорожденных ежегодно. Этот прорыв может изменить практику медицинских вмешательств, позволяя диагностировать и лечить врожд ...>>

Случайная новость из Архива

Удивительные свойства винограда в микроволновке 12.03.2019

На протяжении десятилетий в Интернете распространялся трюк: разрезать виноград пополам, сохранив между двумя половинами тонкую кожуру винограда; нагреть фрукт в микроволновке в течение нескольких секунд - и происходит взрыв: из винограда вырывается маленький плазменный огненный шар - горячая смесь электронов и электрически заряженных атомов или ионов.

Раньше объяснения этого фокуса сосредоточивались на важности связывающей половинки кожицы. Но две целые виноградинки, столкнувшиеся друг с другом, делают то же самое, что и наполненные водой шарики одинакового размера, называемые гидрогелями.

Команда определила, что виноград действует как резонатор для микроволнового излучения, так же, как флейта резонирует со звуковыми волнами. Одна ягода винограда имеет размер, достаточный для того, чтобы электромагнитные волны захватывались плодами и подпрыгивали вперед-назад. Используя тепловизоры, исследователи показали, что в центре винограда в результате захваченного излучения появляется горячая точка. Но если два винограда находятся рядом друг с другом, то эта горячая точка образуется там, где они соприкасается, и соли в кожуре винограда ионизируются и высвобождаются, образуя плазменную вспышку.

Эффект создает фейерверк на кухне, но лучше не попробовать повторить его дома - он может повредить микроволновую печь.

Другие интересные новости:

▪ Датчик нелегалов

▪ Ноутбук Eurocom Panther 5

▪ Еда как наркотик

▪ Вселенная под угрозой темной энергии

▪ Солнечные батареи из пластика

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Узлы радиолюбительской техники. Подборка статей

▪ статья Всыпать по первое число. Крылатое выражение

▪ статья Кто первый испек хлеб на дрожжах? Подробный ответ

▪ статья Машинист (оператор) смесителя асфальтобетона. Типовая инструкция по охране труда

▪ статья Как работает телевизор (развертка). Энциклопедия радиоэлектроники и электротехники

▪ статья Французский сброс. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024