Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Приемник прямого преобразования на 28 МГц для космической связи. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Радиоприем

Комментарии к статье Комментарии к статье

Приемник, описание которого приведено в этой статье, предназначен для приема CW и SSB сигналов любительских радиостанций в участке 29.3...29.6 МГц. Как известно, именно этот участок 10-метрового диапазона рекомендован для любительской связи через ретрансляторы, установленные на искусственных спутниках Земли (канал приема сигналов с борта спутника). Характеристики приемника позволяют использовать его с простыми антеннами для организации любительской связи через учебно-экспериментальные ИC3, находящиеся на круговых орбитах с высотой до 2000 км и имеющие бортовые ретрансляторы с выходной мощностью около 1 Вт.

Технические характеристики

Диапазон принимаемых частот, МГц ....... 29,3... 29,6
Чувствительность при соотношении сигнал/шум 10 дБ, мкВ, не хуже............... 0,3
Входное сопротивление приемника. Ом ..... 75
Селективность при расстройке на±10 кГц, дБ, не хуже ...................... 35
Напряжение источника питания, В ........ 12 (9)
Ток, потребляемый в отсутствие сигнала, мА, не более. ................ 20 (7)

Принципиальная схема приемника приведена на рис.1. Он содержит усилитель ВЧ, диодный смеситель, гетеродин и усилитель НЧ.

Приемник прямого преобразования на 28 МГц для космической связи
Рис.1. Принципиальная схема приемника (нажмите для увеличения)

Сигнал с антенны через согласующий конденсатор связи С1 поступает на двухконтурный полосовой фильтр L1C2L2C3 с полосой пропускания около 300 кГц, а затем усиливается транзистором V1. В коллекторной цепи этого транзистора включен контур L3C8, настроенный на частоту 29,45 МГц. Коэффициент усиления усилителя высокой частоты лишь немного превосходит единицу. Смысл же применения такого усилителя состоит в компенсации потерь в полосовом фильтре и в ослаблении прохождения сигнала гетеродина в антенну.

Смеситель приемника выполнен на диодах V4 и V5, включенных встречно-параллельно. На него подают принимаемый сигнал ("контура L3C8) и напряжение гетеродина (с части катушки L4). В соответствии с принципом работы смесителя частота гетеродина установлена вдвое ниже частоты принимаемого сигнала, т. е. 14,6... 14,8 МГц.

Гетеродин приемника выполнен на транзисторе V6 по схеме емкостной трехточки, что обеспечивает повышенную стабильность частоты, благодаря сравнительно большой емкости конденсаторов С15 и С16, включенных параллельно переходам транзистора. Изменение емкостей переходов в этом случае мало влияет на частоту генерации. Напряжение питания гетеродина стабилизировано стабилитроном V7.

Низкочастотный сигнал, выделенный фильтром нижних частот L5C9C10 с частотой среза 2,8 кГц, поступает на трехкаскадный усилитель НЧ на транзисторах V8-V10, V12. V13. Для повышения температурной стабильности усилитель собран на кремниевых транзисторах. Все три каскада через резисторы R7 и R11 охвачены отрицательной обратной связью по постоянному току.

Оконечный усилитель мощности выполнен по схеме двухтактного эмиттерного повторителя на транзисторах V12, V13 разной структуры. Диод V11 служит для создания небольшого начального смещения выходных транзисторов, что уменьшает искажения типа "ступенька". К выходу приемника можно подключать телефоны с сопротивлением не ниже 70... 100 Ом или громкоговоритель для городской трансляционной сети. Низкоомные динамические головки можно подключать через согласующий трансформатор с соотношением числа витков обмоток приблизительно 5:1.

Регулировка усиления НЧ сигнала не предусмотрена, поскольку достаточно эффективно действует система АРУ. Цепь АРУ содержит выпрямитель (диоды V2, V3) и сглаживающую RC-цепочку (R2C5). Сигнал на выпрямитель АРУ поступает с выхода приемника через цепочку R13C7.

При питании от батареи (9 В) напряжение на стабилитроне V7 оказывается ниже рабочего и потребляемый ток резко уменьшается. Если приемник предполагается питать только от батарей, стабилитрон V7 можно не устанавливать.

В приемнике приняты меры по увеличению чувствительности и снижению уровня собственных шумов. На входе усилителя НЧ установлен малошумящий кремниевый транзистор КТ208. В смесителе применены малошумящие диоды с барьером Шоттки КД514А. Весь сигнальный тракт от входа смесителя до базы входного транзистора усилителя НЧ согласован по сопротивлениям, что обеспечивает малые потери мощности сигнала. Сопротивление смесителя, характеристическое сопротивление фильтра нижних частот и входное сопротивление усилителя НЧ равны друг другу и составляют примерно 2 кОм.

Приемник вполне можно выполнить и без усилителя ВЧ, но это приведет к уменьшению избирательности преселектора. Кроме того, естественно, не будет работать система АРУ. Входную цепь в этом случае выполняют по схеме, показанной на рис. 2.

Приемник прямого преобразования на 28 МГц для космической связи
Рис.2

Принятый антенной сигнал фильтруется Г-образным звеном полосового фильтра L6C1L3C2 и сразу поступает на смеситель. Полоса пропускания фильтра составляет 2...3 МГц. По сравнению с одиночным входным контуром фильтр обеспечивает значительно лучшее подавление внедиапазонных сигналов и меньшие потери в полосе пропускания. Благодаря автотрансформаторному соединению продольной (L6C1) и поперечной (L3C2) ветвей фильтра через отвод катушки L3 сопротивление антенны (75 Ом) трансформируется и согласуется со входным сопротивлением смесителя (2 кОм). Чувствительность приемника без усилителя ВЧ со входной цепью, построенной по схеме рис. 1, достигает 0,3...0,4 мкВ.

Конструкция. Монтаж приемника выполнен на печатной плате размерами 140Х Х50 мм. Цветом на рисунке выделены дорожки, с которых удалена фольга.

Приемник прямого преобразования на 28 МГц для космической связи
Рис. 3. Печатная плата и расположение деталей на ней

В высокочастотных цепях приемника применены керамические конденсаторы. Конденсатор C13 - малогабаритный подстроечный с воздушным диэлектриком, содержащий одну подвижную и одну-две неподвижные пластины. Электролитические конденсаторы - К53-1, остальные - КЛС. Резисторы могут быть любых типов.

Контурные катушки L1- L4 и L6 намотаны на самодельных каркасах из органического стекла. Эскиз каркаса приведен на рис. 4. Для изготовления каркаса из пластины органического стекла толщиной 6 мм отрезают заготовку размерами 9Х13 мм. В ней сверлят отверстие и нарезают резьбу М4. Излишки материала удаляют лобзиком или ножовкой, и затем напильником придают рабочей части каркаса форму, близкую к цилиндрической. Катушки подстраивают сердечниками СЦР-4, взятыми от броневых сердечников СБ-12а. Каждый сердечник следует распилить пополам и на второй половинке пропилить лобзиком шлиц, изготовив, таким образом, два построечника. Их длина составит при этом около 5мм.

Приемник прямого преобразования на 28 МГц для космической связи
Рис. 4. Эскиз каркаса

Намоточные данные катушек приведены в таблице.

Катушки наматывают виток к витку. Катушка L5 намотана на кольцевом сердечнике из феррита М1500НМ (типоразмер К12Х8Х6).

Катушка Число витков Провод
L1 7 ПЭЛШО 0,26
L2 7 ПЭЛШО 0,25
L3 2+5 ПЭЛШО 0,26
L4 4+8 ПЭЛШО 0,26
L5 400 ПЭЛШО 0,09
L6 14 ПЭЛШО 0.26

Можно использовать и другие сердечники с внешним диаметром от 10 до 20мм, подкорректировав соответственно число витков. Оно должно быть обратно пропорционально корню квадратному из магнитной проницаемости. Например, если применен феррит М3000НМ, число витков следует уменьшить до 270. Диаметр кольца влияет на индуктивность слабее, однако при использовании кольца больших размеров число витков следует несколько уменьшить.

Транзистор КП303Е в приемнике можно заменить на КП303Д или КП303Г. Диоды V2, V3-любые кремниевые. В смесителе можно применить с несколько худшим результатом КД503А. КД503Б или КДС523. В гетеродине можно использовать транзисторы КТ312 и КТ315 с любыми буквенными индексами.

Усилитель НЧ можно выполнить и на германиевых низкочастотных транзисторах П27А, П28 (V8), МП39-МП42 (V9, V10 и V13), МП9-МП11, МП37 (V12). В этом случае лишь несколько ухудшится термостабильность. Чтобы получить достаточное усиление по низкой частоте, коэффициент h21э транзисторов V8-V10 должен быть не менее 60...80. В данном низкочастотном усилителе не следует применять высокочастотные транзисторы, так как в этом случае часто наблюдается трудноустранимое самовозбуждение на частотах порядка десятков-сотен килогерц. Диод V11-любой маломощный германиевый.

Конструктивное оформление приемника может быть любым, важно лишь разместить конденсатор C13 в непосредственной близости от контура гетеродина. Конденсатор присоединяют к контуру короткими жесткими проводниками.

Приемник прямого преобразования на 28 МГц для космической связи
Внешний вид платы

Налаживание приемника начинают с проверки режимов транзисторов. Напряжение на эмиттерах транзисторов V12 и V13 должно быть равно половине напряжения питания. Этого добиваются подбором резисторов R7 и R11. Никакого другого налаживания усилитель НЧ обычно не требует. Токи транзисторов VI, V6 устанавливают резисторами R3 и R4.

Частоту генерации гетеродина устанавливают сердечником катушки L4. Частоту контролируют резонансным волномером или градуированным KB приемником.

Затем следует проверить чувствительность приемника без усилителя ВЧ, временно отсоединив вывод стока транзистора V1 от катушки L3. Если присоединить к верхнему выводу катушки L3 через конденсатор связи емкостью 3...5 пФ наружную антенну, должен прослушиваться "шум эфира" и можно принимать сигналы любительских станций Контур L3С8 при этом настраивают по максимальной громкости приема. Для достижения максимальной чувствительности следует подобрать напряжение гетеродина на диодах смесителя, регулируя положение отвода катушки L4. В некоторых пределах напряжение гетеродина можно также изменить, регулируя соотношение емкостей конденсаторов С12 и С14. Например, увеличение емкости конденсатора С12 при соответствующем уменьшении емкости конденсатора С14 вызывает уменьшение амплитуды колебаний при неизменной их частоте.

Налаживание усилителя ВЧ сводится к настройке контуров L1C2, L2C3 и L3C8 в резонанс по максимуму шума на выходе приемника при подключенной антенне. Если усиление высокочастотного усилителя слишком велико (амплитуда шума на выходе приемника с подключенной антенной превосходит 0,5 В) или наблюдается самовозбуждение усилителя, отвод катушки L3 следует переместить ближе к заземленному выводу или зашунтировать эту катушку резистором. При приеме слабых сигналов любительской станции следует подобрать положение ротора конденсатора связи С1, одновременно подстраивая контур L1C2 в резонанс, по максимуму отношения сигнал/шум на выходе приемника.

При налаживании входной цепи приемника без усилителя ВЧ, выполненной по схеме рис. 2, контуры L6C1 и L3C2 настраивают в резонанс по максимальной громкости приема. Изменяя положение отвода катушки L3, добиваются максимального отношения сигнал/шум при приеме сигналов слабых станций.

Автор: В. Поляков (RA3AAE), г. Москва; Публикация: Н. Большаков, rf.atnn.ru

Смотрите другие статьи раздела Радиоприем.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Использование Apple Vision Pro во время операций 16.03.2024

Медицинская команда больницы Кромвеля в Лондоне впервые применила Apple Vision Pro в ходе двух операций на позвоночнике. Это событие подтверждает потенциал гарнитуры в качестве медицинского инструмента, изменяющего подход к хирургической практике. Хотя сами врачи не использовали Vision Pro, операционная медсестра работала с виртуальной реальностью, используя очки во время подготовки и выполнения процедур. Гарнитура позволила просматривать виртуальные экраны в операционной, выбирать инструменты и следить за ходом операции. Программное обеспечение, разработанное компанией eXeX, специализирующейся на создании приложений на основе искусственного интеллекта для хирургии, существенно улучшило процесс оказания медицинской помощи пациентам. Использование Apple Vision Pro открывает новые возможности для разработки приложений в сфере здравоохранения, таких как клиническое образование, планирование операций, обучение и медицинская визуализация. Внедрение Apple Vision Pro в медицинскую пр ...>>

Хранение углерода в Северное море 16.03.2024

Министр энергетики Норвегии Терье Осланд объявил о запуске проекта Longship, нацеленного на создание центрального хранилища углекислого газа в Северном море. Этот амбициозный проект оценивается в $2,6 млрд и направлен на применение технологии CCS (углеродного захвата и хранения) для смягчения воздействия климатических изменений. Норвегия уже имеет опыт в области CCS благодаря успешным проектам Sleipner и Snohvit, и сейчас стремится увеличить объем углерода, запечатываемого под морским дном. План Longship предусматривает создание мощности по захвату и хранению 1,5 млн. тонн углерода ежегодно в течение 25 лет. Несмотря на позитивные перспективы, существуют опасения по поводу долгосрочных последствий такого хранения. Однако сторонники проекта утверждают, что морское хранение углерода имеет ряд преимуществ, включая минимальное воздействие на окружающую среду. Проект Longship осуществляется при участии компаний Equinor, Shell и TotalEnergies через совместное предприятие Northern Li ...>>

Выращены мини-органы из амниотической жидкости человека 15.03.2024

Международная команда ученых под руководством профессора Фань Сюлиня из Университета Чжэцзян разработала уникальный способ выращивания мини-органов из клеток, обнаруженных в амниотической жидкости человека. Этот значительный прорыв в медицине может привести к улучшению диагностики и лечения врожденных заболеваний. Органоиды, представляющие собой трехмерные клеточные структуры, имитирующие органы в меньшем масштабе, были выращены из клеток легких, почек и тонкого кишечника, найденных в амниотической жидкости. Этот метод открывает новые возможности для изучения различных состояний плода и может стать ключом к ранней диагностике и лечению врожденных дефектов. Хотя пока не проводились попытки использования этого метода в лечении, ученые надеются, что их исследования в будущем помогут бороться с серьезными врожденными заболеваниями, которые затрагивают миллионы новорожденных ежегодно. Этот прорыв может изменить практику медицинских вмешательств, позволяя диагностировать и лечить врожд ...>>

Случайная новость из Архива

Зарядка электромобилей в движении 04.05.2014

Новая технология основывается в своей работе на индукционном методе передачи электрической энергии. Особенность технологии в том, что она эффективно действует при любой интенсивности дорожного движения. Водителям теперь не нужно будет тратить время на станциях зарядки, поскольку электромобиль будет подзаряжаться прямо в процессе движения.

Эксперты полагают, что минимальная эффективность системы должна достигать 87-90%. Перед тем, как начать внедрение в дорожное покрытие новой системы, специалисты проводили множество исследований. Была изучена эффективность беспроводной зарядки на высокой скорости, устойчивость системы к климатическим изменениям, вибрации и т.д.

Модули подзарядки будут монтироваться под дорожным полотном. Этот способ монтажа обеспечит нужные условия для подзарядки гибридного пассажирского транспорта, в частности, такси и автобусов.

Каждый водитель получит карту расположения модулей. Вероятнее всего, что они будут находиться в районе остановок общественного транспорта.

Другие интересные новости:

▪ Велосипедный шлем из бумаги

▪ Прорыв в криомикроскопии

▪ Новая мембрана удешевит фильтрацию воды

▪ Искусственный интеллект создал новый материал

▪ Жидкий лазер, не испаряющийся в воздухе

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Искусство видео. Подборка статей

▪ статья Основные понятия и определения медицины катастроф. Основы безопасной жизнедеятельности

▪ статья Если молекулы движутся, то почему мы не видим, что вещи изменяются? Подробный ответ

▪ статья Организация безопасной эксплуатации электроустановок

▪ статья Применение антенных усилителей. Энциклопедия радиоэлектроники и электротехники

▪ статья Простой FM приемник. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024