Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Преобразователь напряжения 12/1000 вольт. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Преобразователи напряжения, выпрямители, инверторы

Комментарии к статье Комментарии к статье

Этот преобразователь напряжения предназначен для питания фотоэлектронного умножителя, но от него можно питать счетчик Гейгера и другие высоковольтные приборы. Схемотехнические решения, заложенные в преобразователе, можно использовать при разработке стабилизированных источников питания многих других электронных устройств.

Преобразователь рис.1 обеспечивает на выходе напряжение 1000 В. Стабильность выходного напряжения такова, что при колебании тока нагрузки от 0 до 200 мкА изменение выходного напряжения невозможно обнаружить по четырехзначному цифровому вольтметру, т.е. оно не превышает 0,1 %.

Преобразователь напряжения 12/1000 вольт
(нажмите для увеличения)

Устройство собрано по традиционной схеме с использованием обратного выброса напряжения самоиндукции. Транзистор VT1, работающий в ключевом режиме, подает на первичную обмотку трансформатора Т1 напряжение источника питания на время, равное 10...16 мкс. В момент закрывания транзистора энергия, накопленная в магнитопроводе трансформатора, преобразуется в импульс напряжения около 250 В на вторичной обмотке (около 40 В на первичной). Умножитель напряжения, образованный диодами VD3 -VD10 и конденсаторами С8 - С15, повышает его до 1000 В. Импульсы управления транзистором VT1 вырабатывает генератор с регулируемой скважностью, собранный на элементах DD1.1-DD1.3.

Управление скважностью импульсов осуществляется выходным напряжением операционного усилителя DA1. Выходное напряжение преобразователя через резистивный делитель R1-R3 поступает на неинвертирующий вход операционного усилителя и сравнивается с образцовым напряжением, стабилизированным термокомпенсированным стабилитроном VD1. В момент включения выходное напряжение преобразователя равно нулю, близко к нулю и напряжение на выходе ОУ DA1. Генератор формирует импульсы максимальной длительности. При соотношении сопротивлений резисторов R9, R11, R12, указанных на схеме, отношение длительности импульсов положительной полярности на выходе элемента DD1.4 к периоду их повторения (коэффициент заполнения) близко к 0,65. При достижении выходным напряжением заданного отрицательное напряжение на выходе ОУ DA1 возрастает, коэффициент заполнения уменьшается, а выходное напряжение стабилизируется. Во время испытания описываемого преобразователя длительность импульсов при нагрузке в указанных выше пределах изменялась от 10 до 12 икс, а их частота повторения - от 18 до 30 кГц, что соответствует коэффициенту заполнения от 0,18 до 0,4. Потребляемый ток увеличивался с 22 до 47 мА.

При максимальной нагрузке и уменьшении питающего напряжения до 10,5 В длительность импульсов увеличивалась до 16 мкс при частоте 36 кГц, что соответствует коэффициенту заполнения 0,57. Дальнейшее снижение напряжения питания приводило к срыву стабилизации. При токе нагрузки 100 мкА стабилизация сохраняется до напряжения источника питания 9,5 В. Конденсатор C3 образует нижнее плечо емкостной части делителя выходного напряжения. Без него напряжение пульсации с выхода преобразователя, равное примерно 1 В, проходило бы на вход ОУ DA1 через резисторы R1 и R2 практически без ослабления. Конденсатор С4 обеспечивает преобразователю устойчивость работы в целом. Диод VD2 и резистор R12 ограничивают максимально возможный коэффициент заполнения. Минимальные длительность импульсов и коэффициент заполнения определяются соотношением сопротивлений резисторов R9 и R11. С уменьшением сопротивления резистора R9 минимальный коэффициент заполнения уменьшается и может стать равным нулю. Стабильность выходного напряжения при различных нагрузках обеспечивается за счет большого коэффициента усиления в петле обратной связи преобразователя.

Для устойчивости работы преобразователя при таком коэффициенте усиления необходим конденсатор С4 большой емкости. Но это приводит к увеличению длительности установления выходного напряжения при скачкообразных изменениях нагрузки. Сократить время установления можно уменьшением емкости конденсатора С4, включением последовательно с ним резистора сопротивлением несколько десятков килоом, подключением параллельно этому конденсатору резистора сопротивлением в несколько мегом. Все детали преобразователя можно смонтировать на печатной плате, выполненной из одностороннего фольгированного стеклотекстолита (рис. 2).

Преобразователь напряжения 12/1000 вольт

Плата рассчитана в основном на установку резисторов типа МЛТ. Резисторы R1-R3, R5 и R7, от которых зависит долговременная стабильность преобразователя, стабильные типа С2-29. Подстроенный резистор R6 - СПЗ-19а. Конденсатор С1 типа К53-1, С8-С15 - К73-17 на номинальное напряжение 400 В, другие конденсаторы - КМ-5, КМ-б. Выбор стабилитрона VD1 определяется предъявляемыми требованиями по стабильности. Диод VD2 любой кремниевый маломощный, а диоды умножителя напряжения (VD3-VD10) типа КД104А. Микросхему К561ЛА7 можно заменить на К561ЛЕ5, КР1561ЛА7, КР1561ЛЕ5 или на аналогичные из серии 564. Транзистор VT1 должен быть высокочастотным или среднечастотным, с допустимым напряжением коллектор-эмиттер не менее 50 В и напряжением насыщения не более 0,5 В при токе коллектора 100 мА.

Для ускорения выхода среднечастотного транзистора из насыщения при выключении емкость конденсатора С6 следует увеличить. Операционный усилитель К140УД6 (DA1) можно заменить на КР140УД6 без изменения рисунка печатных проводников платы или на любой другой с полевыми транзисторами на входе. Трансформатор Т1 намотан на кольцевом магнитопроводе типоразмера К20х12х6 из феррита М1500НМЗ. Первичная обмотка содержит 35 витков, а вторичная - 220 витков провода ПЭЛШО 0,2.

С целью уменьшения межобмоточной емкости провод вторичной обмотки следует укладывать одним толстым слоем, постепенно смещаясь по магнитопроводу, при этом первый и последний витки должны оказаться рядом. Первичная обмотка однослойная, ее наматывают поверх вторичной. Полярность подключения выводов обмоток роли не играет.

Настраивать преобразователь следует в таком порядке. Отключить первичную обмотку трансформатора от транзистора, а верхний (по схеме) вывод резистора R3 соединить с минусовым выводом источника питания через два резистора с общим сопротивлением 140 кОм. При вращении движка подстроенного резистора R6 коэффициент заполнения импульсов на выходе элемента DD1.4 (контролировать осциллографом или вольтметром постоянного напряжения, включенным между выходом этого элемента и общим проводом) должен скачком изменяться от минимального (примерно 0,1 или импульсы могут исчезать полностью) до максимального (0,65). Движок подстроенного резистора зафиксировать в положении возникновения этого скачка. Затем полностью смонтировать преобразователь, подключить к его выходу вольтметр с входным сопротивлением не менее 10 МОм и включить питание.

Выходное напряжение можно контролировать таким же вольтметром и по напряжению на резисторе R3 (5 В) или микроамперметром, включенным последовательно с этим резистором (50 мкА). Далее подстроить резистором R6 выходное напряжение преобразователя и проверить стабильность его работы при изменении нагрузки и напряжения источника питания.

Для уменьшения помех, излучаемых преобразователем, он помещен в латунный корпус. Для большего подавления помех во вторичную цепь преобразователя можно включить простейший RC-фильтр, а в первичную -дроссель ДМ-0,1 индуктивностью 400 мкГн и проходной конденсатор.

Описанный преобразователь рассчитан на работу от стабилизированного источника питания 12 В, у которого с общим проводом соединен плюсовой вывод. Но без каких-либо изменений в монтаже с общим проводом можно соединить минусовый вывод источника питания. В порядке эксперимента испытан вариант преобразователя с питанием от двуполярного источника ±12 В. Основная его часть собрана по такой же схеме, конденсатор С1 (на номинальное напряжение 30 В) вдвое меньшей емкости включен между цепями +12 и -12 В, нижние (по схеме) вывод резистора R14 и вывод первичной обмотки трансформатора Т1 подключены к цепи 4-12 В. Номиналы замененных элементов: R13 - 1,1 кОм; С6 - 1600 пФ; С7 - 430 пФ; R14 - 2 кОм. Транзистор VT1 -КТ815Г. Число витков первичной обмотки трансформатора Т1 увеличено в два раза. Если использовать нестабилизированный источник питания, то коэффициент стабилизации цепи R4VD1 может оказаться недостаточным.

В этом случае цепь питания стабилитрона следует выполнить по схеме, приведенной на рис. 3.

Преобразователь напряжения 12/1000 вольт

Светодиод HL1 будет выполнять функцию индикатора включения питания.

Смотрите другие статьи раздела Преобразователи напряжения, выпрямители, инверторы.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Использование Apple Vision Pro во время операций 16.03.2024

Медицинская команда больницы Кромвеля в Лондоне впервые применила Apple Vision Pro в ходе двух операций на позвоночнике. Это событие подтверждает потенциал гарнитуры в качестве медицинского инструмента, изменяющего подход к хирургической практике. Хотя сами врачи не использовали Vision Pro, операционная медсестра работала с виртуальной реальностью, используя очки во время подготовки и выполнения процедур. Гарнитура позволила просматривать виртуальные экраны в операционной, выбирать инструменты и следить за ходом операции. Программное обеспечение, разработанное компанией eXeX, специализирующейся на создании приложений на основе искусственного интеллекта для хирургии, существенно улучшило процесс оказания медицинской помощи пациентам. Использование Apple Vision Pro открывает новые возможности для разработки приложений в сфере здравоохранения, таких как клиническое образование, планирование операций, обучение и медицинская визуализация. Внедрение Apple Vision Pro в медицинскую пр ...>>

Хранение углерода в Северное море 16.03.2024

Министр энергетики Норвегии Терье Осланд объявил о запуске проекта Longship, нацеленного на создание центрального хранилища углекислого газа в Северном море. Этот амбициозный проект оценивается в $2,6 млрд и направлен на применение технологии CCS (углеродного захвата и хранения) для смягчения воздействия климатических изменений. Норвегия уже имеет опыт в области CCS благодаря успешным проектам Sleipner и Snohvit, и сейчас стремится увеличить объем углерода, запечатываемого под морским дном. План Longship предусматривает создание мощности по захвату и хранению 1,5 млн. тонн углерода ежегодно в течение 25 лет. Несмотря на позитивные перспективы, существуют опасения по поводу долгосрочных последствий такого хранения. Однако сторонники проекта утверждают, что морское хранение углерода имеет ряд преимуществ, включая минимальное воздействие на окружающую среду. Проект Longship осуществляется при участии компаний Equinor, Shell и TotalEnergies через совместное предприятие Northern Li ...>>

Выращены мини-органы из амниотической жидкости человека 15.03.2024

Международная команда ученых под руководством профессора Фань Сюлиня из Университета Чжэцзян разработала уникальный способ выращивания мини-органов из клеток, обнаруженных в амниотической жидкости человека. Этот значительный прорыв в медицине может привести к улучшению диагностики и лечения врожденных заболеваний. Органоиды, представляющие собой трехмерные клеточные структуры, имитирующие органы в меньшем масштабе, были выращены из клеток легких, почек и тонкого кишечника, найденных в амниотической жидкости. Этот метод открывает новые возможности для изучения различных состояний плода и может стать ключом к ранней диагностике и лечению врожденных дефектов. Хотя пока не проводились попытки использования этого метода в лечении, ученые надеются, что их исследования в будущем помогут бороться с серьезными врожденными заболеваниями, которые затрагивают миллионы новорожденных ежегодно. Этот прорыв может изменить практику медицинских вмешательств, позволяя диагностировать и лечить врожд ...>>

Случайная новость из Архива

Реактивный двигатель гасит пожары 13.05.2000

Идея, предложенная еще в ГДР, осуществляется в объединенной Германии: реактивным двигателем можно тушить пожары. Более десяти лет назад в рамках конверсии в ГДР поставили турбины от МИГа, выработавшие свой ресурс, на списанный танк.

В дюзы запущенных турбин стали впрыскивать воду. Подхваченная мощным потоком выхлопов вода превращалась в тончайший туман, быстро и эффективно гасящий огонь. Такие установки впервые были применены при тушении нефтяных скважин в Кувейте после войны в Персидском заливе.

Теперь противопожарная служба химической фирмы БАСФ самостоятельно разработала свой вариант такой установки. На мощном грузовике смонтированы две турбины от истребителей. Их выхлопные струи уносят воду, пенообразующую смесь или гасящий порошок на расстояние до 130 метров.

Запаса горючего хватает на час, при этом распыляется почти полмиллиона литров воды. При испытании искусственный пожар в туннеле километровой длины был погашен за минуту. Площадь размером с футбольное поле покрывается огнегасящей пеной за 26 секунд.

Другие интересные новости:

▪ Мате значительно повышает риск рака

▪ Технология ClearForce для чувствительности дисплеев к силе нажатия

▪ Статическое электричество усиливает песчаные бури

▪ Запущена самая длинная линия защищенной квантовой связи

▪ Магнитный спрей создает роботов

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Важнейшие научные открытия. Подборка статей

▪ статья Роберт Пенн Уоррен. Знаменитые афоризмы

▪ статья Государство. Большая энциклопедия для детей и взрослых

▪ статья Глухой узел. Советы туристу

▪ статья Обозначение зарубежных радиоэлементов. Энциклопедия радиоэлектроники и электротехники

▪ статья Приоритетное включение и отключение нагрузок. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024