Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Защита трансформаторных устройств от перенапряжений. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Защита аппаратуры от аварийных режимов работы сети

Комментарии к статье Комментарии к статье

В настоящее время существует большое количество электронных устройств, требующих непрерывного питания от сети: устройства видеонаблюдения, контроля и сигнализации, электронные часы, многофункциональные телефонные аппараты, устройства беспроводной связи и др. Постоянное нахождение такого устройства во включенном состоянии повышает риск его поломки из-за бросков сетевого напряжения. Причем аппараты могут не только выйти из строя, но и стать причиной пожара.

Устройство, схема которого показана на рис.1, предназначено для защиты аппаратуры с трансформаторными блоками питания от сетевых перенапряжений.

Защита трансформаторных устройств от перенапряжений

Когда амплитуда сетевого напряжения повышается выше допустимой, силовой ключ на полевом транзисторе VT1 отключает первичную обмотку понижающего трансформатора Т1 от сетевого напряжения. Особенностью конструкции является то, что если защищаемый блок питания работает на слаботочную нагрузку, например, на электронные часы-будильник или телефонный аппарат, то они продолжат свою работу, поскольку трансформатор будет получать часть напряжения питания

Устройство состоит из двух узлов:

  • контроля выходного напряжения трансформатора на элементах R2, R3, VD6, VD10, HL1, VU1;
  • высоковольтного силового ключа на VT1, VS1, VD1...VD4, R1, R4...R6, С1...С4.

Элементы FU1 Т1, L1, L2, VD11, VD14, С9 относятся к защищаемому блоку питания.

Когда напряжение в сети не превышает норму, стабилитрон VD10 закрыт, и светодиод оптрона VU1 не светится. Поскольку при каждой полуволне выпрямленного сетевого напряжения на затвор полевого транзистора VT1 через резистор R4 поступает открывающее напряжение, он открыт, и на первичную обмотку сетевого трансформатора Т1 поступает полное напряжение питания, из которого вычитается прямое падение напряжения на диодах VD1...VD4. равное 1..2 В, и пороговое напряжение открывания полевого транзистора (3.6 В).

Если напряжение в сети увеличивается, то увеличивается и амплитуда напряжения на вторичной обмотке Т1, что приводит к открыванию стабилитрона VD10. При этом светится светодиод оптрона. и его фототранзистор открывается. Протекающим через него током открывается маломощный тиристор VS1. Он шунтирует затвор VT1. транзистор закрывается, и питание первичной обмотки Т1 отсекается. Эти процессы повторяются при каждой полуволне сетевого напряжения

При номинальном напряжении сети (220 В) амплитуда сетевого напряжения - около 310 В. Если устройство настроено на защиту от превышения напряжения свыше 250 В, то питание трансформатора ограничивается при достижении амплитудного значения около 352 В.

Питание защищаемого БП не прекращается полностью, как в большинстве защитных устройств, а снижается поступающая на трансформатор мощность. Форма напряжения на вторичной обмотке трансформатора искажается и. в зависимости от величины перенапряжения и тока нагрузки, имеет примерно такой вид. как показано на рис.2.

Дроссели L1 и L2 снижают уровень поступающих на трансформатор сетевых помех. Кроме того, при работе БП в режиме ограничения мощности эти дроссели несколько снижают уровень создаваемых защитным узлом проникающих в сеть помех, хотя при аварийной ситуации это не принципиально. Поскольку при модернизации БП напряжение на выходе его выпрямителя будет понижено примерно на 3%, основной выпрямитель БП - диоды VD11...VD14 - лучше заменить диодами Шоттки, что на 1.2 В увеличит напряжение на конденсаторе фильтра С9. Конденсаторы С5...С8 служат для устранения мультипликативного фона при радиоприеме, а также для предотвращения пробоя диодов Шоттки, особо чувствительных к превышению величины обратного напряжения. С помехами также борются конденсаторы С1...С4.

Резисторы R2 и R3 уменьшают ток через мостовой выпрямитель VD6...VD9 и ограничивают величину экстратока при пробое изоляции оптрона, например, во время грозы. Свечение светодиода HL1 при работе защиты почти но заметно. Он начинает ярко светиться при питании БП повышенным напряжением - в случае, если узел защиты не работает, например, пробит VT1Стабилитрон VD5 при нормальной работе устройства никакого влияния на работу VT1 не оказывает, но защищает ПТ, например, при прикосновении к выводу его затвора отверткой и в других нештатных ситуациях.

Детали. Дроссели L1 и L2 - малогабаритные, промышленные или самодельные, индуктивностью не менее 33 мкГн, рассчитанные на соответствующий ток. Резисторы - типа МЛТ С1-4 С1-14, С2-23. Конденсаторы С1...С4 - керамические, малогабаритные, на рабочее напряжение не менее 1500 В, С5 С8 - керамические с рабочим напряжением в 2.3 раза выше напряжения на вторичной обмотке Т1. Конденсатор С9 - обычный оксидный. Диоды 1N4006 можно заменить на 1N4005,1N4007.1N4937, КД243Д (Е...Ж), КД258Г или другие на соответствующий нагрузке ток и рабочее напряжение не менее 600 В. Диоды Шоттки SR360 допускают обратное напряжение до 60 В и средневыпрямленный ток до 3 А. Их можно заменить наMBRD360. MBR360. Если смириться с немного большим падением напряжения, то можно использовать и популярные диоды 1N5819. допускающие выпрямленный ток до 1 А.

Мощный n-канальный поповой транзистор. КП707В2 можно заменить на. КП707В1, КП707Е1. IRFPE30. SSP3N80. BUZ80, аналогичный. При роботе с мощными трансформаторами, ток в первичной обмотке которых превышает 0.2 А. транзистор надо установить на небольшой теплоотвод. При монтаже полевого транзистора не забывайте, что он чувствителен к повреждению статическим электричеством. Вместо тиристора КУ112А подойдет. КУ112АМ. Оптрон LTV817 можно заменить. РС817 или аналогичным. Стабилитрон КС518 заменяется 1N4746А. Тип используемого стабилитрона VD10 зависит от выходного напряжения на вторичной обмотке трансформатора при минимальном токе нагрузки и от того, на какое максимальное напряжение сети будет настроен защитный узел. Если выбор стабилитронов ограничен, то здесь можно использовать регулируемый стабилитрон TL431 в соответствующей схеме включения. Вместо стабилитрона КС515Г можно применить 1N4744A.

В качестве примера защитный узел работает с промышленным трансформатором. ТП20-1. По параметрам ему близок ТВК-110ЛМ. На месте Т1 может быть практически любой силовой трансформатор с выходным напряжением на одной из вторичных обмоток 5...40 В. При необходимости диоды VD11...VD14 и конденсатор С9 устанавливаются на большее рабочее напряжение. Поскольку в выпрямителях линейных БП нет смысла использовать диоды Шоттки с рабочим напряжением более 100 В мостовой выпрямитель можно сделать на диодах серии КД213. также с относительно небольшим падением напряжения. Цоколевка некоторых элементов показана на рис.3.

Защита трансформаторных устройств от перенапряжений

При работе защитного узла с блоками питания мощностью менее 10 Вт резистор R1 желательно установить меньшего сопротивления - 20...47 кОм.

Поскольку часть элементов конструкции находится под напряжением сети, соблюдайте правила безопасности.

Автор: А.Бутов, с. Курба Ярославской обл.

Смотрите другие статьи раздела Защита аппаратуры от аварийных режимов работы сети.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Использование Apple Vision Pro во время операций 16.03.2024

Медицинская команда больницы Кромвеля в Лондоне впервые применила Apple Vision Pro в ходе двух операций на позвоночнике. Это событие подтверждает потенциал гарнитуры в качестве медицинского инструмента, изменяющего подход к хирургической практике. Хотя сами врачи не использовали Vision Pro, операционная медсестра работала с виртуальной реальностью, используя очки во время подготовки и выполнения процедур. Гарнитура позволила просматривать виртуальные экраны в операционной, выбирать инструменты и следить за ходом операции. Программное обеспечение, разработанное компанией eXeX, специализирующейся на создании приложений на основе искусственного интеллекта для хирургии, существенно улучшило процесс оказания медицинской помощи пациентам. Использование Apple Vision Pro открывает новые возможности для разработки приложений в сфере здравоохранения, таких как клиническое образование, планирование операций, обучение и медицинская визуализация. Внедрение Apple Vision Pro в медицинскую пр ...>>

Хранение углерода в Северное море 16.03.2024

Министр энергетики Норвегии Терье Осланд объявил о запуске проекта Longship, нацеленного на создание центрального хранилища углекислого газа в Северном море. Этот амбициозный проект оценивается в $2,6 млрд и направлен на применение технологии CCS (углеродного захвата и хранения) для смягчения воздействия климатических изменений. Норвегия уже имеет опыт в области CCS благодаря успешным проектам Sleipner и Snohvit, и сейчас стремится увеличить объем углерода, запечатываемого под морским дном. План Longship предусматривает создание мощности по захвату и хранению 1,5 млн. тонн углерода ежегодно в течение 25 лет. Несмотря на позитивные перспективы, существуют опасения по поводу долгосрочных последствий такого хранения. Однако сторонники проекта утверждают, что морское хранение углерода имеет ряд преимуществ, включая минимальное воздействие на окружающую среду. Проект Longship осуществляется при участии компаний Equinor, Shell и TotalEnergies через совместное предприятие Northern Li ...>>

Выращены мини-органы из амниотической жидкости человека 15.03.2024

Международная команда ученых под руководством профессора Фань Сюлиня из Университета Чжэцзян разработала уникальный способ выращивания мини-органов из клеток, обнаруженных в амниотической жидкости человека. Этот значительный прорыв в медицине может привести к улучшению диагностики и лечения врожденных заболеваний. Органоиды, представляющие собой трехмерные клеточные структуры, имитирующие органы в меньшем масштабе, были выращены из клеток легких, почек и тонкого кишечника, найденных в амниотической жидкости. Этот метод открывает новые возможности для изучения различных состояний плода и может стать ключом к ранней диагностике и лечению врожденных дефектов. Хотя пока не проводились попытки использования этого метода в лечении, ученые надеются, что их исследования в будущем помогут бороться с серьезными врожденными заболеваниями, которые затрагивают миллионы новорожденных ежегодно. Этот прорыв может изменить практику медицинских вмешательств, позволяя диагностировать и лечить врожд ...>>

Случайная новость из Архива

Шины между рельсами 17.02.2007

С июля 2006 года в странах Европейского союза запрещено закапывать или сжигать старые автопокрышки. Между тем только в Великобритании их за год накапливается до 50 миллионов.

Английские изобретатели предложили делать из отслуживших шин резиновые панели и укладывать эти панели на заброшенные железнодорожные пути, превращая их таким образом в автомобильные дороги. После утраты железнодорожным транспортом ведущего места в экономике ненужных рельсовых веток в Англии немало. В то же время, так как рельсы не снимаются и не закрываются этим дорожным покрытием, по дороге могут курсировать трамваи.

На километр дороги уйдет около 220 тысяч шин. Пока построен опытный участок длиной 300 метров. На укладку резиновых панелей пятерым рабочим потребовалась неделя.

Другие интересные новости:

▪ Тайваньские производители бросают OLED

▪ Солнечный велосипед

▪ Оптические наноантенны и атомы золота

▪ Яйца и помидоры для автозапчастей

▪ Флэш-накопители Transcend USB 3.0 128 и 256 ГБ

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Биографии великих ученых. Подборка статей

▪ статья Толочь воду в ступе, носить воду в решете. Крылатое выражение

▪ статья Отчего белое пьют охлажденным, а красное - комнатной температуры? Подробный ответ

▪ статья Долгая жизнь мотора. Личный транспорт

▪ статья Универсальный автомобильный пробник (два в одном). Энциклопедия радиоэлектроники и электротехники

▪ статья Нормы приемо-сдаточных испытаний. Сухие токоограничивающие реакторы. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024