Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Малогабаритный импульсный источник питания 12 вольт 2 ампера. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Блоки питания

Комментарии к статье Комментарии к статье

Предлагаемый автогенераторный ИИП (импульсный источник питания) имеет малые габариты и высокий КПД. Его особенностью является то, что магнитопровод импульсного трансформатора работает с заходом в область насыщения. При проектировании автогенераторных ИИП в большинстве случаев мощный трансформатор используют в линейном режиме, а маломощный переключательный - в режиме насыщении магнитопровода. Отдельные обмотки этих трансформаторов соединяют последовательно одна с другой и токоограничивающим резистором - так образуется цепь положительной обратной связи (ПОС).

Недостатком такого решения является повышенное выделение тепла в этом резисторе. Стремление уменьшить мощность, рассеиваемую этим резистором, в большинстве случаев приводит к повышению нагрева переключательных транзисторов и снижению КПД. Невысокий КПД вынуждает разработчиков обращать внимание на иные схемотехнические решения преобразователей, например, на автогенераторы Ройера. Они имеют трансформатор с насыщающимся магнитопроводом, а маломощный переключательный трансформатор и токоограничительный резистор в них отсутствуют.

Однако через переключательные транзисторы в моменты коммутации протекает ток, амплитуда импульса которого может превышать в 3...20 раз среднее значение потребляемого тока. Это обстоятельство не только диктует условие выбора транзисторов с большим запасом по току, но и проявляется в повышенном их нагреве. КПД такого ИИП составляет примерно 50 % при выходной мощности до 30 Вт. КПД можно повысить, включив в эмиттерные цепи переключательных транзисторов низкоомные резисторы. Именно так и сделано в ИИП, схема которого показана на рис. 1.

Малогабаритный импульсный источник питания 12 вольт 2 ампера. Схема ИП
Рис. 1

На первый взгляд может показаться, что это приведет только к повышенному выделению тепла на этих резисторах. Но благодаря этим резисторам возникает местная отрицательная обратная связь (ООС) по току, ограничивающая ток коллектора транзистора при его резком увеличении. В результате этого амплитуда коллекторного тока в моменты коммутации транзисторов в несколько раз уменьшается, увеличивая КПД ИИП. В предлагаемом ИИП нагрев переключательных транзисторов и трансформатора по сравнению с вариантом, в котором эти резисторы отсутствуют, уменьшился примерно в три раза, соответственно повысились его надежность и КПД.

Технические характеристики
Напряжение сети, В 220 ±20%
Выходное напряжение холостого хода, В 15
Выходное напряжение при максимальной нагрузке, В 12
Максимальный ток нагрузки, А 2
Частота преобразования в режиме холостого хода, кГц 7,3
Частота преобразования при максимальной нагрузке, кГц 6,7
Ток холостого хода ИИП, не более, мА 19
Максимальная мощность, потребляемая нагрузкой, Вт 24
Максимальный КПД (при максимальной выходной мощности), % 84
Амплитуда пульсаций выходного напряжения, не более, мВ 22
Габаритные размеры, мм 110x73x25

Сетевое напряжение поступает на ИИП через плавкую вставку FU1, которая совместно с варистором RU1 защищает элементы ИИП от повышенного сетевого напряжения. Термистор RK1 ограничивает импульс тока при зарядке конденсаторов С2-С4 в момент включения ИИП. Сетевое напряжение через помехоподавляющий фильтр L1C1 поступает на диодный мост VD1, где выпрямляется и затем сглаживается конденсатором С2. Элементы С5, R3, VS1 образуют цепь, которая облегчает запуск преобразователя при его включении.

Демпфирующие диоды VD2, VD3 ограничивают до безопасного значения амплитуду импульсов напряжения на коллекторах переключательных транзисторов VT1, VT2. Тепловыделение в этих транзисторах оказалось небольшим, поэтому они использованы без теплоотводов. В самом тяжелом режиме транзисторы нагреваются до 50°С. Резисторы R2, R4 образуют цепь ООС по току, а цепи R5C6 и R6C7 предназначены для форсированного переключения транзисторов. Выходное переменное напряжение выпрямляет диодный мост VD4-VD7, L2C8C9 - сглаживающий фильтр, причем дроссель обеспечивает индуктивную реакцию фильтра, что необходимо для надежного запуска преобразователя. Установка на выходе выпрямителя конденсаторов емкостью от 68 нф и более приведет к невозможности запуска. Светодиод HL1 индицирует наличие выходного напряжения. Все детали ИИП смонтированы на печатной плате из односторонне фольгированного стеклотекстолита, чертеж которой показан на рис. 2.

Малогабаритный импульсный источник питания 12 вольт 2 ампера. Печатная плата ИП
Рис. 2

Для улучшения охлаждения транзисторов в плате под ними сделаны вентиляционные отверстия. Дроссель L1 и трансформатор Т1 крепят винтами. После того как эти винты будут вставлены в отверстия платы, на них со стороны деталей следует надеть отрезки полихлорвиниловой трубки. Затем устанавливают дроссель, трансформатор и прижимают их к плате с помощью пластмассовых шайб. Транзисторы крепят винтами на металлических стойках, а затем припаивают к плате. Предохранитель FU1 представляет собой два луженых штифта, запрессованных в плату, между которыми припаяна медная проволока диаметром 0,03 мм. Снаружи его закрывают отрезком полихлорвиниловой трубки для защиты от механических повреждений, а в случае срабатывания для защиты компонентов ИИП от брызг расплавленного металла. Для плавкой вставки FU2 на плате монтируют металлопластиковый держатель. Внешний вид собранного и включенного в сеть ИИП показан на рис. 3.

Малогабаритный импульсный источник питания 12 вольт 2 ампера. Фото ИП
Рис. 3

Динистор КН102Д заменим на DB3, DB4 или на любой из серии КН102, диоды 1.5КЕ350СА заменимы на 1.5КЕ300СА, 1.5КЕ400СА, 1.5КЕ440СА, диоды 2Д2999Б - на КД2999А, КД213А-КД213В, КД2997А, КД2997Б. Светодиод YL-BB3N7M можно заменить на любой малогабаритный любого цвета свечения с рабочим током до 20 мА. После проведении экспериментов автор выяснил, что транзисторы КТ812А заменимы на КТ840А. При применении транзисторов 2Т704А, КТ704Б, КТ809А нагрев увеличивался, но был в допустимых пределах, однако они имеют другой корпус, что потребует изменения топологии печатной платы. Термистор SCK-103NTC можно заменить на MZ92-P220RM, MZ92-R220RM, MZ92-P330RM, MZ92-R330RM, варистор VCR391 - JVR-10N361K, JVR-14N361K, JVR-20N361K, JVR-10N391 К, JVR- 14N391 К, JVR-20N391K, JVR-10N431K, JVR-14N431K.JVR-20N431K. Дроссель L1 намотан на магнитопроводе М2000НМ типоразмера К10x6x5 и содержит 10 витков сложенного вдвое провода МГТФ 0,12 или ПЭЛШО 0,3.

Дроссель L2 намотан на магнитопроводе М2000НМ типоразмера К16x10x5, обмотка содержит 24 витка провода ПЭТВ или ПЭВ-2 диаметром 0,85 мм. Для трансформатора Т1 применен магнитопровод М2000НМ-А К32х18х7 из феррита (измеренная автором магнитная проницаемость была 1885, а индукция глубокого насыщения - 0,38 Тл). Допустимо применить магнитопроводы М2000НМ1, М2000НМ1-17, М2000НМ-39 типоразмера К32x20x6. Для намотки можно применить провод ПЭТВ, ПЭВ-2 или ПЭЛШО, обмотки I и III содержат по 8 витков провода диаметром 0,3 мм, обмотка II - 351 виток провода диаметром 0,45 мм, обмотка IV - 33 витка провода диаметром 0,85 мм.

Предварительно кромки магнитопровода стачивают и наматывают два слоя лакоткани или один слой матерчатой изоляционной ленты. Провода всех обмоток укладывают плотно к магнитопроводу. Обмотки I и III наматывают первыми одновременно в два провода с промежутком 3...5 мм между проводами для исключения пробоя. Затем обмотки пропитывают шеллаком и наматывают два слоя лакоткани. Далее - один слой обмотки II, укладывая провод "виток к витку". Между началом и концом этого слоя должно быть расстояние 6...7 мм, провод закрепляют и пропитывают обмотку шеллаком. Следом прокладывают слой лакоткани и точно так же наматывают второй и третий слои обмотки II, после чего прокладывают два слоя лакоткани или изоляционной ленты. Последней наматывают обмотку IV, пропитывают ее шеллаком. Затем - два-три слоя изоляционной ленты для защиты обмоток от механических повреждений. При налаживании следует помнить, что элементы ИИП находятся под опасным для жизни напряжением сети, поэтому все замены элементов при отключенном от сети устройстве.

Перед первым включением источника в сеть следует проверить монтаж и убедиться, что собранное изделие соответствует схеме. После этого вынимают плавкую вставку FU2 из держателя и включают ИИП в сеть. Если после включения автогенерация не возникает, то увеличивают емкость конденсатора С5 до 1 мкФ или устанавливают резистор R3 сопротивлением 120 Ом. Если ток холостого хода ИИП будет более 40 мА (измеряют между сетевым фильтром и диодной сборкой VD1), то это значит, что индукция насыщения магнитопровода намного меньше 0,38 Тл. В этом случае необходимо пропорционально увеличить число витков во всех обмотках трансформатора Т1. Увеличивать число витков следует минимум на 10...15 %, а при необходимости и более. При нормальной работе ИИП трансформатор Т1 должен издавать тихий свист.

В заключение следует отметить, что основой этого ИИП является трансформатор Т1, поэтому, если необходимо применить магнитопровсд иного типоразмера или получить другую мощность, следует провести перерасчет всех элементов. Проще всего это сделать на компьютере, используя авторскую программу Converter 4.0.0.0, moskatov.narod.ru/ Converter.html

Автор: Е. Москатов, г. Таганрог Ростовской обл.; Публикация: cxem.net

Смотрите другие статьи раздела Блоки питания.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Использование Apple Vision Pro во время операций 16.03.2024

Медицинская команда больницы Кромвеля в Лондоне впервые применила Apple Vision Pro в ходе двух операций на позвоночнике. Это событие подтверждает потенциал гарнитуры в качестве медицинского инструмента, изменяющего подход к хирургической практике. Хотя сами врачи не использовали Vision Pro, операционная медсестра работала с виртуальной реальностью, используя очки во время подготовки и выполнения процедур. Гарнитура позволила просматривать виртуальные экраны в операционной, выбирать инструменты и следить за ходом операции. Программное обеспечение, разработанное компанией eXeX, специализирующейся на создании приложений на основе искусственного интеллекта для хирургии, существенно улучшило процесс оказания медицинской помощи пациентам. Использование Apple Vision Pro открывает новые возможности для разработки приложений в сфере здравоохранения, таких как клиническое образование, планирование операций, обучение и медицинская визуализация. Внедрение Apple Vision Pro в медицинскую пр ...>>

Хранение углерода в Северное море 16.03.2024

Министр энергетики Норвегии Терье Осланд объявил о запуске проекта Longship, нацеленного на создание центрального хранилища углекислого газа в Северном море. Этот амбициозный проект оценивается в $2,6 млрд и направлен на применение технологии CCS (углеродного захвата и хранения) для смягчения воздействия климатических изменений. Норвегия уже имеет опыт в области CCS благодаря успешным проектам Sleipner и Snohvit, и сейчас стремится увеличить объем углерода, запечатываемого под морским дном. План Longship предусматривает создание мощности по захвату и хранению 1,5 млн. тонн углерода ежегодно в течение 25 лет. Несмотря на позитивные перспективы, существуют опасения по поводу долгосрочных последствий такого хранения. Однако сторонники проекта утверждают, что морское хранение углерода имеет ряд преимуществ, включая минимальное воздействие на окружающую среду. Проект Longship осуществляется при участии компаний Equinor, Shell и TotalEnergies через совместное предприятие Northern Li ...>>

Выращены мини-органы из амниотической жидкости человека 15.03.2024

Международная команда ученых под руководством профессора Фань Сюлиня из Университета Чжэцзян разработала уникальный способ выращивания мини-органов из клеток, обнаруженных в амниотической жидкости человека. Этот значительный прорыв в медицине может привести к улучшению диагностики и лечения врожденных заболеваний. Органоиды, представляющие собой трехмерные клеточные структуры, имитирующие органы в меньшем масштабе, были выращены из клеток легких, почек и тонкого кишечника, найденных в амниотической жидкости. Этот метод открывает новые возможности для изучения различных состояний плода и может стать ключом к ранней диагностике и лечению врожденных дефектов. Хотя пока не проводились попытки использования этого метода в лечении, ученые надеются, что их исследования в будущем помогут бороться с серьезными врожденными заболеваниями, которые затрагивают миллионы новорожденных ежегодно. Этот прорыв может изменить практику медицинских вмешательств, позволяя диагностировать и лечить врожд ...>>

Случайная новость из Архива

Магнитные головки полируют зеленым чаем 19.07.2004

Инженеры из Аризоны придумали, как на основе зеленого чая приготовить дешевую и, главное, биоразлагаемую жидкость для полировки магнитных головок.

Считывающие головки магнитных дисков нужно полировать очень тщательно: если на поверхности и случаются неровности, их высота не должна превышать десяти ангстрем. Чтобы смывать всевозможные пылинки, а равно и частички полировочного порошка, служит жидкость с липкими добавками.

Как нетрудно догадаться, обычно эти вещества специально синтезируют, и, будучи не по зубам почвенным микробам, они после использования загрязняют окружающую среду. Объем таких отходов не мал - за год выпускают более 160 миллионов жестких дисков. Поэтому и возникает желание заменить синтезированные вещества на природные: они-то изначально предназначены в пищу микроорганизмам.

В жидкость для полировки магнитных головок инженеры из малой компании "Ventana Research Corporation" во время работы по гранту Национального фонда науки (США), выделенному по программе поддержки инновационных исследований, предложили добавлять компоненты экстракта зеленого чая.

"Это именно те вещества, которые создают темный налет на чайных и кофейных чашках, - говорит руководитель компании Джон Ломбарди. - Они легко прилипают к частицам керамического абразива. Попытки изготовить жидкость на основе природных компонентов предпринимались и ранее, однако нам удалось сделать их из дешевого, доступного сырья - листьев чая".

Догадаться, что липкое вещество надо искать в чае, было непросто. Тут помог случай: однажды руководитель работы заметил, что строение компонентов клея, которым морские желуди приклеиваются к днищу судов, похоже на танины чая. Ну а уж выделить соответствующее вещество из растения было делом техники.

Другие интересные новости:

▪ Ультразвуковое удобрение

▪ Искусственный интеллект играет в футбол

▪ Ежегодное ускорение темпов таяния ледовых покровов

▪ Чип Wi-Fi со скоростью 1,7 Гбит/с

▪ Прототип умных очков с автофокусом

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Регуляторы мощности, термометры, термостабилизаторы. Подборка статей

▪ статья Луций Анней Сенека (Младший). Знаменитые афоризмы

▪ статья Где можно увидеть 176 фонтанов, работающих без насосов? Подробный ответ

▪ статья Арнебия красящая. Легенды, выращивание, способы применения

▪ статья Общие сведения по туалетным мылам. Простые рецепты и советы

▪ статья Телепатия без помощи ассистента. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024