Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Отладочный модуль для микроконтроллеров серии MCS51. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Микроконтроллеры

Комментарии к статье Комментарии к статье

Разработка устройств на микроконтроллерах (МК), как правило, осуществляется по простому плану: МК в типовом включении "обвешивается" необходимой периферией, затем пишут программное обеспечение. При этом приходится использовать различные инструментальные средства, которые берут на себя рутинную работу, оставляя программисту решение творческих задач.

Описываемое ниже устройство - "полуфабрикат" микроконтроллерной системы, инструмент для ее отладки и объект исследования одновременно. Оно предназначено для приобретения навыков программирования и отладки программ для MCS51, но может служить и как макет реальной системы, позволяя отлаживать прикладное программное обеспечение совместно с объектом управления. Имея такой модуль, разработчик будет избавлен от необходимости часто пользоваться программатором или эмулятором ПЗУ, недоступными для многих из-за высокой стоимости.

Принципиальная схема отладочного модуля для МК серии MCS51 изображена на рисунке. Большинство узлов выполнено по типовым схемам, а устройство сопряжения с последовательным портом персонального компьютера (ПК) заимствовано из прибора, описанного в статье С. Кулешова и Ю. Зауменного "Программатор микросхем ПЗУ" ("Радио", 1995, № 10, с. 22-25). К свободным выводам портов P1 и P3 микроконтроллера DD1 (на схеме они заканчиваются стрелками) можно подключать различные периферийные устройства. Вилку XP1 соединяют кабелем с розеткой одного из последовательных портов ПК, под управлением которого будет работать модуль.

Отладочный модуль для микроконтроллеров серии MCS51
(нажмите для увеличения)

После подачи напряжения питания конденсатор C3 заряжается через резистор R1. По сигналу сброса RES, формируемому элементом DD3.4, МК DD1 переходит в исходное состояние и выполняет подготовительные операции, в том числе устанавливает уровень логической 1 на всех выводах порта P3. Триггер на элементах DD3.1, DD3.2 находится в состоянии, когда его выходным сигналом установлено такое распределение памяти, что область адресов 0-7FFFH памяти программ занимает ПЗУ (DD5), а 8000H-0FFFFH - ОЗУ (DD6). Выполняется программа Монитор, находящаяся в ПЗУ. Набирая команды Монитора на клавиатуре ПК, оператор может работать с ОЗУ и периферией модуля.

Для перевода триггера в другое состояние необходимо подать с управляющего ПК описанную ниже команду Монитора RESET, которая устанавливает сигнал MOD=0. Адреса ОЗУ и ПЗУ памяти программ меняются местами и начинает работать программа, предварительно занесенная оператором в ОЗУ модуля. Это позволяет эмулировать работу реального устройства и проверять программы, оттранслированные в младшие адреса памяти, например, подготовленные для записи в ПЗУ. Кнопка SB1 служит для установки МК в исходное состояние без изменения распределения памяти. Вновь запустить Монитор можно только, нажав на кнопку SB2 или выключив и включив питание. Это позволяет в отлаживаемых программах свободно оперировать состоянием порта P3 (например, работая с периферией), не опасаясь случайно переключить распределение памяти.

Светодиод HL1 служит простейшим средством отображения информации и весьма полезен, особенно если связь с ПК по той или иной причине отсутствует. После подачи питания он мигает с частотой примерно 1 Гц, что свидетельствует о работоспособности Монитора. Стабилитрон защищает устройство от неправильной полярности или повышенного напряжения источника питания +5 В.

Программа Монитор (табл.1) обеспечивает управление модулем и его взаимодействие через последовательный порт RS-232C с ПК, из которого передаются команды и данные, необходимые для работы над конкретной задачей. Через этот же порт ПК получает и отображает на своем экране результаты работы модуля. В ПК должна быть запущена коммуникационная программа "Telemax" из широко распростран╦нной оболочки Norton Commander 5.0, "Hyper Terminal" из Windows 95 OSR2 или другая подобная. В крайнем случае можно обойтись и без специальной программы, просто посылая командой MS DOS файлы с подготовленными данными в последовательный порт ПК.

Отладочный модуль для микроконтроллеров серии MCS51
(нажмите для увеличения)

Настраивая коммуникационную программу, следует удалить строки инициализации модема, установить режимы "Локальное эхо" и "Трансляция CR/LF", при необходимости выбрать терминал ANSI и кодовую таблицу ASCII. Режим работы последовательного порта должен быть следующим: скорость - 4800 Бод, число бит на символ - 8, контроль паритета выключен, число стоп-битов - 1. Если все правильно, набираемый на клавиатуре ПК текст будет поступать в отладочный модуль, а его ответы - отображаться на экране.

Команды Монитора можно набирать как в верхнем, так и нижнем регистрах клавиатуры. Все символы должны быть в кодировке ASCII. Клавиша [BackSpace] удаляет из буфера отладочного модуля последний введ╦нный символ. Каждая команда состоит из имени и операнда. Признаком окончания имени служит символразделитель: пробел, табуляция, перевод строки или возврат каретки. Далее будем условно обозначать его символом подчеркивания (_), но вводить можно любой из названных.

Приняв разделитель, Монитор сравнивает первые четыре ранее принятых и находящихся в буфере символа с содержимым имеющейся в ПЗУ таблицы команд. Обнаружив совпадение, он запоминает адрес обработчика команды из той же таблицы и начинает при╦м операнда - одного или нескольких шестнадцатиричных чисел. Условимся, что одно- и двубайтные адреса внутренней и внешней памяти МК будут обозначены соответственно XX и XXXX, длина блока - YYYY, прочие данные - ZZ или ZZZZ. Например, XXXX,YYYY - блок внешней памяти данных, начинающийся с адреса XXXX, длиной YYYY байт. Все незначащие нули необходимо указывать. Операнд также должен закончиться разделителем, после приема которого запускается обработчик команды. Разделитель, введ╦нный в пустой буфер, игнорируется.

RESET_ ZZZZ_ - включается второй режим распределения памяти, МК приводится в исходное состояние, управление передается по адресу ZZZZ. Для нормальной работы команды требуется исправное ОЗУ.

DATA_ XXXX:_ ZZ_ [ZZ_][XXXX:_ZZ_ [ZZ_]._- вводится информация в последовательные ячейки внешней памяти данных, начиная с адреса XXXX . Квадратные скобки вводить не нужно, они лишь говорят о том, что число операндов ZZ_ может быть произвольным. Ввод данных заканчивается символом точки. В табл. 2 приведен пример использования команд DATA и RESET для ввода в ОЗУ простой программы и ее запуска.

READ_XX_ или READ_XXXX_ - читается слово (два последовательных байта) из ячеек памяти внутреннего или внешнего ОЗУ данных. Результат в виде шестнадцатиричного числа (байт по старшему адресу - первым) передается в последовательный порт.

WRITE_XX,ZZ_, WRITE_XX,ZZZZ_, WRITE_XXXX,ZZ_ или WRITE_XXXX,ZZZZ_ - записывается байт ZZ или слово ZZZZ по адресу XX или ХХХХ.

Следует иметь в виду, что команды READ и WRITE реализованы с использованием косвенной адресации, поэтому с регистрами специальных функций работать не могут. Для доступа к регистрам следует специально для каждого из них написать процедуры обмена с прямой адресацией. Примером может служить обработчик команды SPEED. Если в модуле установлен МК с 256-байтным внутренним ОЗУ, команды READ и WRITE смогут работать с его дополнительными 128 байтами по адресам 80H-0FFH.

LOAD_XXXX,YYYY_ - заполняется информацией, поступающей через последовательный порт, блок внешней памяти данных.

SAVE_XXXX,YYYY_ - в последовательный порт передается содержимое блока внешней памяти данных.

CALL_ZZZZ_ - вызывается подпрограмма, начинающаяся с адреса ZZZZ. Для возврата в Монитор она должна закончиться командой RET. На время выполнения подпрограммы прерывания запрещены.

CHECK_XXXX,YYYY_ - вычисляется контрольная сумма - младший байт суммы всех байтов блока внешней памяти данных.

FILL_XXXX,YYYY,ZZ_ - заполняется байтом ZZ область внешней памяти данных и вычисляется ее контрольная сумма.

COPY_XXXX,YYYY,ZZZZ_ или COPY_PXXXX,YYYY,ZZZZ_ - копируется по адресу ZZZZ блок внешней памяти данных. Символ P указывает, что копируемая область находится в памяти программ. Одновременно вычисляется контрольная сумма.

TEST_XXXX,YYYY_ - проверяется исправность блока внешнего ОЗУ. При отсутствии ошибок выводится сообщение "OK", в противном случае - "XXXX: YY<>ZZ", где XXXX - адрес сбойной ячейки, YY - записанное в нее, а ZZ - считанное значение. Команда не разрушает содержимого оперативной памяти.

SPEED_ZZ_ или SPEED_ZZ+_ - изменяется скорость обмена данными через последовательный порт. По умолчанию она равна 4800 Бод (определяется байтом программы Монитора по адресу 2DH). Значение, равное операнду ZZ, помещается в регистр TH1 микроконтроллера и определяет скорость работы его при╦мопередатчика. Знак плюс в операнде приводит к удвоению скорости за счет установки бита PCON.7.

Последовательный порт ПК может работать со скоростями 110, 300, 1200, 2400, 4800, 9600, 19200, 38400, 57600 Бод и выше. Возможность достаточно точной настройки последовательного порта МК серии MSC51 на указанные скорости зависит от частоты примененного кварцевого резонатора. Например, если она равна 12 МГц, порт может быть настроен на 300, 600, 1200, 2400 и 4800 Бод командой SPEED с операндами соответственно 98, CC, E6, F3 и F3+. Применив резонатор на 11 МГц, можно было бы достичь скорости 9600 Бод. Однако при передаче файлов МК, вероятно, не будет успевать обрабатывать поступающие со слишком высокой скоростью данные.

Описанный набор команд может быть расширен и дополнен без повторной трансляции Монитора и даже без стирания ПЗУ. Обработчик новой команды размещают в его свободной области. Имя команды (четыре первых символа в верхнем регистре) записывают, начиная с адреса 5ABH, далее следуют двубайтный адрес обработчика и байт 0FFH. Обработчик должен заканчиваться переходом по адресу 23FH.

Все упоминаемые далее однобайтные адреса ячеек относятся к внутреннему ОЗУ МК. Монитор использует банки регистров 0 и 2, а также ячейки 20H-3FH. Стек растет с адреса 50H. В свободное от приема и обработки команд время микроконтроллер непрерывно выполняет подпрограмму, находящуюся в ПЗУ по адресу, указанному в ячейках 35H и 36H. По умолчанию он равен 063H. Эта подпрограмма, периодически изменяя состояние разряда P3.4, зажигает и гасит светодиод HL1. Частота мигания зависит от содержимого ячейки 3DH. Если предполагается использовать этот разряд для других целей, следует подать команду WRITE_35,006A_.

В ячейках 37H и 38H находится адрес обработчика прерывания от последовательного порта, который фактически служит костяком Монитора и определяет его реакции на команды оператора. По умолчанию здесь записан 0, что соответствует вызову стандартного обработчика, находящегося в ПЗУ по адресу 081H.

Записав по адресу 3BH код, отличный от 0, можно активизировать функцию "Эхо". Все принимаемые через последовательный порт данные Монитор будет отсылать обратно. Это позволит выключить "Локальное эхо" в коммуникационной программе, а при необходимости - сохранить в текстовом файле все посылаемые отладочному модулю команды и его ответы на них.

Число по адресу 3AH задает паузу между приемом команды Монитором и ответом на нее, необходимую для переключения некоторых коммуникационных программ с передачи на прием (для "Telemax" этого не требуется). Оно равно длительности паузы в секундах, умноженной на 50.

Один из результатов работы команд, оперирующих блоками памяти (LOAD, SAVE, CHECK, FILL, COPY), - контрольная сумма блока, помещаемая в ячейку 39H. Ее можно использовать для контроля правильности исполнения перечисленных команд.

Монитор может непосредственно принимать создаваемые многими ассемблерами файлы формата Intel HEX. Достаточно переслать такой файл в последовательный порт ПК с помощью коммуникационной программы или просто командой MSDOS COPY <имя файла> COM2. Предварительно используемый порт (в данном случае COM2) должен быть настроен командой MODE COM2:4800,N,8,1. Информация будет записана во внешнюю память данных отладочного модуля, а в случае несовпадения контрольных сумм выдано соответствующее сообщение.

Каждая строка файла формата Intel HEX начинается символом двоеточия, за которым без пробелов следуют представленные двузначными шестнадцатиричными числами байты:

  • число байтов данных, содержащихся в строке;
  • старший и младший байты адреса первого из байтов данных;
  • нулевой байт;
  • байты данных (их число задано первым байтом строки);
  • контрольная сумма
  • младший байт обычной суммы всех байтов строки, взятой со знаком минус.

HEX-файл всегда завершается строкой, содержащей после двоеточия нулевые значения числа байтов данных и адреса, за которыми следуют признак последней строки (01) и контрольная сумма, равная FF. В табл.3 приведен пример такого файла, содержащего те же данные, что и вводимые командой Монитора DATA согласно табл.2.

Автор: В.Оглезнев, г.Ижевск

Смотрите другие статьи раздела Микроконтроллеры.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Использование Apple Vision Pro во время операций 16.03.2024

Медицинская команда больницы Кромвеля в Лондоне впервые применила Apple Vision Pro в ходе двух операций на позвоночнике. Это событие подтверждает потенциал гарнитуры в качестве медицинского инструмента, изменяющего подход к хирургической практике. Хотя сами врачи не использовали Vision Pro, операционная медсестра работала с виртуальной реальностью, используя очки во время подготовки и выполнения процедур. Гарнитура позволила просматривать виртуальные экраны в операционной, выбирать инструменты и следить за ходом операции. Программное обеспечение, разработанное компанией eXeX, специализирующейся на создании приложений на основе искусственного интеллекта для хирургии, существенно улучшило процесс оказания медицинской помощи пациентам. Использование Apple Vision Pro открывает новые возможности для разработки приложений в сфере здравоохранения, таких как клиническое образование, планирование операций, обучение и медицинская визуализация. Внедрение Apple Vision Pro в медицинскую пр ...>>

Хранение углерода в Северное море 16.03.2024

Министр энергетики Норвегии Терье Осланд объявил о запуске проекта Longship, нацеленного на создание центрального хранилища углекислого газа в Северном море. Этот амбициозный проект оценивается в $2,6 млрд и направлен на применение технологии CCS (углеродного захвата и хранения) для смягчения воздействия климатических изменений. Норвегия уже имеет опыт в области CCS благодаря успешным проектам Sleipner и Snohvit, и сейчас стремится увеличить объем углерода, запечатываемого под морским дном. План Longship предусматривает создание мощности по захвату и хранению 1,5 млн. тонн углерода ежегодно в течение 25 лет. Несмотря на позитивные перспективы, существуют опасения по поводу долгосрочных последствий такого хранения. Однако сторонники проекта утверждают, что морское хранение углерода имеет ряд преимуществ, включая минимальное воздействие на окружающую среду. Проект Longship осуществляется при участии компаний Equinor, Shell и TotalEnergies через совместное предприятие Northern Li ...>>

Выращены мини-органы из амниотической жидкости человека 15.03.2024

Международная команда ученых под руководством профессора Фань Сюлиня из Университета Чжэцзян разработала уникальный способ выращивания мини-органов из клеток, обнаруженных в амниотической жидкости человека. Этот значительный прорыв в медицине может привести к улучшению диагностики и лечения врожденных заболеваний. Органоиды, представляющие собой трехмерные клеточные структуры, имитирующие органы в меньшем масштабе, были выращены из клеток легких, почек и тонкого кишечника, найденных в амниотической жидкости. Этот метод открывает новые возможности для изучения различных состояний плода и может стать ключом к ранней диагностике и лечению врожденных дефектов. Хотя пока не проводились попытки использования этого метода в лечении, ученые надеются, что их исследования в будущем помогут бороться с серьезными врожденными заболеваниями, которые затрагивают миллионы новорожденных ежегодно. Этот прорыв может изменить практику медицинских вмешательств, позволяя диагностировать и лечить врожд ...>>

Случайная новость из Архива

8-разрядные микроконтроллеры PIC12F635 и PIC12F636 24.04.2004

Фирмой MICROCHIP TECHNOLOGY объявлено о выпуске первых двух 8-разрядных микроконтроллеров PIC12F635 и PIC12F636 со встроенной криптографической периферией KEELOQ.

Микроконтроллеры предназначены специально для систем засекречивания и идентификации. Технология KEELOQ представляет собой нелинейный алгоритм засекречивания, который создает для каждого случая неповторяющиеся наборы кодов.

Микроконтроллер PIC12F635 выпускается в 8-выводных корпусах PDIP, SOIC, DFN-S, микроконтроллер PIC12F636 - в 14-выводных корпусах PDIP, SOIC, TSSOP.

Другие интересные новости:

▪ Технология NFC получит еще большее распространение

▪ Скорость мобильной передачи данных 1 Тбит/с

▪ Беспокойство передается через глаза

▪ Гаджеты без аккумуляторов

▪ Моделирование поведения человека в толпе

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Освещение. Подборка статей

▪ статья Вместо вентиляционной решетки. Советы домашнему мастеру

▪ статья Как были открыты антибиотики? Подробный ответ

▪ статья Функциональный состав телевизоров Happi. Справочник

▪ статья Душистые саше. Простые рецепты и советы

▪ статья Схема, распиновка (распайка) кабеля Alcatel One Touch Easy DB. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024