Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Микроконтроллерное устройство управления инкубатором. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Микроконтроллеры

Комментарии к статье Комментарии к статье

Предлагаемое вниманию читателей устройство - один из вариантов, разработанных автором приборов для управления малогабаритным инкубатором. Он обеспечивает стабилизацию температуры и периодическое включение двигателя исполнительного механизма для поворота лотков. Его можно также использовать как точный терморегулятор с возможностью периодического подключения дополнительной нагрузки, например, вентилятора.

От ранее описанных устройство отличается тем, что осуществляет полностью цифровой контроль и стабилизацию температуры с точностью 0,1 °С и изменяемым гистерезисом, а также позволяет регулировать время работы исполнительного механизма в пределах 1 ...999 с и паузу между включением двигателя в пределах 1...999 мин.

Устройство состоит из блоков управления и коммутации, соединенных пятижильным кабелем.

Принципиальная схема блока управления изображена на рис. 1. Он содержит микроконтроллер DDI, осуществляющий все необходимые операции сравнения температуры и отсчета временных интервалов, дешифратор DD2, индикаторы HG1 -HG3 и два стабилизатора напряжения питания: DA1 - цифровой части устройства и DA2 - аналоговой.

Микроконтроллерное устройство управления инкубатором

Блок коммутации (рис. 2) состоит из двух электронных ключей, один из которых (R22, U1, VD5, R24, VS1) предназначен для включения и выключения нагревателя (осветительной лампы EL1), а другой (R23, U2, VD6, R25, VS2) - электродвигателя исполнительного механизма.

Микроконтроллерное устройство управления инкубатором

Для измерения температуры применен интегральный термодатчик DA3 с линейной зависимостью выходного напряжения от температуры [1]. На транзисторах VT3, VT4 собран генератор тока 1 мА для питания DA3. Напряжение, снимаемое с его вывода 1, подается на преобразователь напряжение-частота, выполненный на микросхеме DA5 (иА02ПП1 [2]).

Поскольку напряжение на выводе 1 датчика DA3 относительно его вывода 2 зависит от температуры с коэффициентом 10 мВ/К (К - Кельвин), для смещения показаний в шкалу Цельсия на вывод 8 DA5 подается образцовое напряжение +2,732 В, снимаемое с вывода 3 стабилизатора DA4

Импульсы с вывода 9 преобразователя DA5 поступают на формирователь, собранный на транзисторах VT1, VT2 (см. рис. 1), усиленные колебания с его выхода подаются на счетный вход RA4 DD1. Микроконтроллер измеряет частоту поступающего сигнала и управляет индикаторами HG1-HG3. Первый из них отображает десятки, второй и третий - соответственно единицы и десятые доли градуса Цельсия.

Управляют устройством кнопками SB1- SB3. При первом нажатии SB1 ("Установка") на индикаторы выводится значение температуры нижнего предела (если она станет ниже этого значения, включится нагреватель). После отпускания кнопки устройство переходит в режим настройки, о чем свидетельствует мигание индикатора, который представляет модифицируемый разряд параметра. Первоначально для изменения доступен младший разряд (HG3). Нужный разряд выбирают нажатием кнопки SB2 ("Выбор"), а требуемое значение устанавливают с помощью SB3 ("+").

Следующее нажатие кнопки SB1 переводит устройство в режим установки верхнего предела температуры (при его превышении нагреватель отключается). Нужное значение устанавливают, манипулируя теми же кнопками SB2 и SB3.

После третьего нажатия кнопки SB1 на индикаторах отображается время (в секундах), на которое включается после очередной паузы механизм поворота лотков. Следующее нажатие на SB1 выводит для модификации интервал (в минутах) между включениями электродвигателя. Если хотя бы один из этих параметров (время работы или паузы) равен нулю, исполнительный механизм не включается.

Наконец, пятое нажатие кнопки SB1 переводит устройство в рабочий режим, и на индикаторах появляется значение текущей температуры. Все установленные параметры сохраняются в энергонезависимой памяти микроконтроллера DDI. Следует заметить, что в режиме установки измерение и сравнение температуры не производятся.

Коды программы для микроконтроллера DD1 приведены в таблице.

Микроконтроллерное устройство управления инкубатором
(нажмите для увеличения)

Блоки управления и коммутации, а также измерительная часть устройства (на рис. 2 обведена штрихпунктирной линией) смонтированы на отдельных макетных платах подходящих размеров (печатные платы не разрабатывались).

В качестве источника питания устройства допустимо использовать любой малогабаритный блок, обеспечивающий выходное напряжение не менее 12 В при токе 150 мА.

Вместо PIC16F84 в блоке управления можно применить микроконтроллеры PIC16F84A, PIC16CR84 или PIC16C84. Постоянные резисторы R16 - R18 - с допускаемым отклонением от номинала ±1...2%, остальные - с допуском ±10%, подстроечные R19 и R20 - СПЗ-19а, СПЗ-39а или проволочные СП5-2. Оптроны АОУ115Г заменимы приборами АОУ115Д, АОУ1 В, индикаторы АЛC324Б - аналогичными импортными с общим анодом (при этом сопротивление резисторов R5-R12 можно увеличить в два-три раза).

Кроме КУ208Г, в блоке коммутации допустимо применение симисторов ТС112-10, ТС112-16. Если мощность нагрузки симистора не превышает 200 Вт, можно обойтись без теплоотвода, в противном случае необходим ребристый теплоотвод (при коммутируемой мощности до 1 кВт его размеры - примерно 60x50x25 мм).

Термодатчик К1019ЧТ1 отличается от описанного в [1] К19Ml (зарубежный аналог LM335) отсутствием вывода калибровки. При использовании К1019ЕМ1 его вывод 3 подключают вместо вывода 2 К1019ЧТ1, вывод 2 - вместо вывода 1, а вывод калибровки оставляют свободным.

Микроконтроллерное устройство управления инкубатором

Микросхема ПНЧ UА02ПП1 - модифицированный аналог зарубежной LM331, схема включения которой изображена на рис. 3. В крайнем случае вместо UA0ПП1 можно использовать КР1108ПП1, включив ее в соответствии со схемой на рис. 1, приведенной в [3], и уменьшив номинал любого из частотозадающих элементов в два раза (предпочтительнее конденсатора С1). Однако такая замена потребует применения двуполярного источника питания напряжением +15 и -15 В.

Налаживание устройства сводится к калибровке измерительной части.

Для этого датчик DA3 помещают в тающий снег или лед и подстроечным резистором R19 устанавливают нулевые показания индикаторов. Затем датчик вместе с точным термометром опускают в термос с водой, нагретой до температуры +30...40 °С. Через некоторое время подстроечным резистором R20 добиваются соответствующих показаний индикаторов. В некоторых случаях может потребоваться подбор резистора R16 в пределах 90...110кОм.

Возможны различные варианты конструкции устройства. Например, блок управления располагают снаружи инкубатора и соединяют пятижильным кабелем с устройством коммутации, размещенным внутри камеры инкубатора. В любом случае измерительную часть рекомендуется изготовить в виде выносного датчика, установленного над лотками и соединенного с устройством трехжильным кабелем. В авторском варианте этот узел смонтирован на малогабаритной плате и помещен в герметичный пластмассовый корпус.

Рекомендации по конструированию исполнительного механизма приведены в [4]. Следует заметить, что благодаря возможности точной установки времени работы двигателя, отпадает необходимость в кулачковом механизме и контактных выключателях на валу редуктора двигателя. Во время налаживания устройства нужно только точно подобрать такое время работы двигателя, чтобы вал редуктора поворачивался на нужный угол.

Литература

  1. Бирюкове. Микросхемы-термодатчики К1019ЕМ1, К1019ЕМ1А. - Радио, 1996, № 7, с. 59.
  2. Техническое описание UА02ПП1. - <kwazar-ia.kiev.ua>
  3. Интегральный преобразователь напряжение-частота-напряжение КР1108ПП1 и его применение. - Радио, 2001, № 8, С. 51.
  4. Григорьев А. Блок управления кинематикой инкубатора. - Радио, 1999, № 10, с. 32.

Автор: А.Борисевич, г.Севастополь, Украина

Смотрите другие статьи раздела Микроконтроллеры.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Использование Apple Vision Pro во время операций 16.03.2024

Медицинская команда больницы Кромвеля в Лондоне впервые применила Apple Vision Pro в ходе двух операций на позвоночнике. Это событие подтверждает потенциал гарнитуры в качестве медицинского инструмента, изменяющего подход к хирургической практике. Хотя сами врачи не использовали Vision Pro, операционная медсестра работала с виртуальной реальностью, используя очки во время подготовки и выполнения процедур. Гарнитура позволила просматривать виртуальные экраны в операционной, выбирать инструменты и следить за ходом операции. Программное обеспечение, разработанное компанией eXeX, специализирующейся на создании приложений на основе искусственного интеллекта для хирургии, существенно улучшило процесс оказания медицинской помощи пациентам. Использование Apple Vision Pro открывает новые возможности для разработки приложений в сфере здравоохранения, таких как клиническое образование, планирование операций, обучение и медицинская визуализация. Внедрение Apple Vision Pro в медицинскую пр ...>>

Хранение углерода в Северное море 16.03.2024

Министр энергетики Норвегии Терье Осланд объявил о запуске проекта Longship, нацеленного на создание центрального хранилища углекислого газа в Северном море. Этот амбициозный проект оценивается в $2,6 млрд и направлен на применение технологии CCS (углеродного захвата и хранения) для смягчения воздействия климатических изменений. Норвегия уже имеет опыт в области CCS благодаря успешным проектам Sleipner и Snohvit, и сейчас стремится увеличить объем углерода, запечатываемого под морским дном. План Longship предусматривает создание мощности по захвату и хранению 1,5 млн. тонн углерода ежегодно в течение 25 лет. Несмотря на позитивные перспективы, существуют опасения по поводу долгосрочных последствий такого хранения. Однако сторонники проекта утверждают, что морское хранение углерода имеет ряд преимуществ, включая минимальное воздействие на окружающую среду. Проект Longship осуществляется при участии компаний Equinor, Shell и TotalEnergies через совместное предприятие Northern Li ...>>

Выращены мини-органы из амниотической жидкости человека 15.03.2024

Международная команда ученых под руководством профессора Фань Сюлиня из Университета Чжэцзян разработала уникальный способ выращивания мини-органов из клеток, обнаруженных в амниотической жидкости человека. Этот значительный прорыв в медицине может привести к улучшению диагностики и лечения врожденных заболеваний. Органоиды, представляющие собой трехмерные клеточные структуры, имитирующие органы в меньшем масштабе, были выращены из клеток легких, почек и тонкого кишечника, найденных в амниотической жидкости. Этот метод открывает новые возможности для изучения различных состояний плода и может стать ключом к ранней диагностике и лечению врожденных дефектов. Хотя пока не проводились попытки использования этого метода в лечении, ученые надеются, что их исследования в будущем помогут бороться с серьезными врожденными заболеваниями, которые затрагивают миллионы новорожденных ежегодно. Этот прорыв может изменить практику медицинских вмешательств, позволяя диагностировать и лечить врожд ...>>

Случайная новость из Архива

Эхолот для дрона 08.03.2020

Летучие мыши способны лететь сквозь полную темноту, ориентируясь с помощью эхолокации. Так почему бы не использовать этот же принцип в беспилотной технике? Ученые Университета Пердью задались этим вопросом и разработали систему, которая позволяет дрону ориентироваться в пространстве, используя лишь четыре микрофона и динамик.

Принцип работы системы невероятно прост. Динамик издает звук, этот звук отражается от окружающих объектов и улавливается микрофонами. Скорость звука постоянна. Значит, по времени, за которое микрофон улавливает отраженную звуковую волну, можно с помощью простейших математических вычислений определить дистанцию до объекта, от которого отразился звук. Имея в распоряжении четыре микрофона, можно создать подробную трехмерную карту окружающего пространства вокруг дрона. И все это - без единой камеры. Более того, технология способна работать не только в воздухе. Ее можно эффективно применять и на наземной или водной технике.

Конечно, разработка еще не идеальна. В настоящее время дрон должен зависать на месте во время звукового сканирования, но в будущем разработчики планируют модернизировать систему, научив бортовой компьютер дрона производить вычисления в движении.

По словам ученых, в некоторых случаях эхолокация работает надежнее визуального распознавания образов. Иногда камера может ошибаться. Беспилотный дрон "видит" перед собой несуществующую стену и зависает в нерешительности. Эхолокация таких проблем не имеет. Если использовать ее в сочетании с существующими системами компьютерного зрения, можно добиться потрясающей точности работы беспилотной техники.

Другие интересные новости:

▪ Ностальгия полезна для психики

▪ Dell расширяет ассортимент

▪ Samsung продолжает поддерживать Rambus

▪ Самое древнее колесо

▪ Самое ясное небо

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Опыты по химии. Подборка статей

▪ статья Космодромы. История изобретения и производства

▪ статья Как глубоко проникают корни растений? Подробный ответ

▪ статья Администратор сетей. Должностная инструкция

▪ статья Обзор рынка металлоискателей и металлодетекторов. Энциклопедия радиоэлектроники и электротехники

▪ статья Улучшение звучания 15ГД-11А и 10ГД-35. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:




Комментарии к статье:

Анатолий
Схема не рабочая,режим термостат не работает,на выходе постоянно нагрев,независимо от измеряемой температуры,поворот лотков и как термометр работает

Радио
Собрал, проблемы, это только у меня или у других тоже?


All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024