Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Многоканальный дистанционный вольтметр на микроконтроллере. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Микроконтроллеры

Комментарии к статье Комментарии к статье

Многоканальный дистанционный вольтметр является устройством, позволяющим удаленно измерять значения переменных синусоидальных напряжений от нескольких различных источников (шесть каналов в данной реализации) и представлять полученную информацию на шести трехразрядных семисегментных индикаторах.

Разработка устройства обусловлена необходимостью постоянного контроля энергоснабжения оборудования, расположенного на некотором удалении от места нахождения человека. В настоящее время устройство применяется для контроля трех фаз входного напряжения подаваемого на промышленный нормализатор и трех фаз снимаемого напряжения. Расстояние от места измерения до места индикации составляет 800м.

Конструктивно вольтметр выполнен в виде двух модулей - модуля измерения и передачи, располагающегося непосредственно в месте измерения, а так же модуля приема и индикации, устанавливаемого на рабочем месте. Связь между двумя модулями организуется с помощью пары проводов (в настоящее время используется телефонная пара). Канал связи гальванически развязан от узлов устройства, находящихся под опасным напряжением, передача информации производится токовым сигналом, имеющим значение до 30мА.

Многоканальный дистанционный вольтметр на микроконтроллере. Структурная схема

Технические характеристики устройства:

- Измеряемое напряжение: 100-330V AC, 50Hz;
- Интервал между измерениями: 0.5 сек. (обновляются все 6 значений);
- Напряжение питания модуля приема и индикации: 7-25V DC;
- Напряжение пробоя гальванической развязки модулей: 5.0кВ;
- Максимальная погрешность измерения: ±1,5%.

Многоканальный дистанционный вольтметр на микроконтроллере. Принципиальная схема модуля измерения и передачи
(нажмите для увеличения)

Аналого-цифровое преобразование производится с помощью АЦП, интегрированного в МК ATmega8. Для измерения действующего значения переменного напряжения реализован алгоритм детектирования пика синусоидального сигнала и его последующее умножение на амплитудный коэффициент синусоиды.

Питание модуля измерения и передачи производится через бестрансформаторный блок питания от первого канала измеряемого напряжения. При падении напряжения на этом канале ниже уровня 90В модуль отключается. Светодиод HL1 служит для индикации процесса передачи информации приемному модулю.

Многоканальный дистанционный вольтметр на микроконтроллере. Принципиальная схема модуля приёма и индикации
(нажмите для увеличения)

Питание модуля приема и индикации осуществляется от внешнего источника постоянного напряжения 7-25В.

В нормальном режиме на всех индикаторах отображаются значения измеряемого напряжения, соответствующие определенному каналу. При отсутствии посылок от передатчика в течении более 2-х периодов обновления (примерно 1,4 сек.) на всех индикаторах отображается слово "Err", что сигнализирует о нарушении канала связи, либо неисправности передатчика. Индикация возвращается в нормальный режим после получения очередной посылки. Снижение напряжения по какому-либо из каналов, кроме первого, ниже 100В приводит к индикации прочерка "---" на соответствующем индикаторе, остальные каналы отображаются в нормальном режиме.

В данном исполнении вольтметра производится измерение исключительно сетевого переменного напряжения, однако внеся минимальные изменения в программную часть МК передающего модуля, а так же изменив номиналы резисторов делителей напряжения R5-R10 и R11-R16, возможно измерять и постоянное напряжение по всем или нескольким отдельным каналам.

Прошивки микроконтроллеров, печатные платы в формате GIF и LAY (SprintLayout), а так же фотографии готового устройства можно скачать здесь (430 кБайт).

Автор: Лукащук Антон Сергеевич, a.s.lukashuk[собака]gmail.com; Публикация: cxem.net

Смотрите другие статьи раздела Микроконтроллеры.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Использование Apple Vision Pro во время операций 16.03.2024

Медицинская команда больницы Кромвеля в Лондоне впервые применила Apple Vision Pro в ходе двух операций на позвоночнике. Это событие подтверждает потенциал гарнитуры в качестве медицинского инструмента, изменяющего подход к хирургической практике. Хотя сами врачи не использовали Vision Pro, операционная медсестра работала с виртуальной реальностью, используя очки во время подготовки и выполнения процедур. Гарнитура позволила просматривать виртуальные экраны в операционной, выбирать инструменты и следить за ходом операции. Программное обеспечение, разработанное компанией eXeX, специализирующейся на создании приложений на основе искусственного интеллекта для хирургии, существенно улучшило процесс оказания медицинской помощи пациентам. Использование Apple Vision Pro открывает новые возможности для разработки приложений в сфере здравоохранения, таких как клиническое образование, планирование операций, обучение и медицинская визуализация. Внедрение Apple Vision Pro в медицинскую пр ...>>

Хранение углерода в Северное море 16.03.2024

Министр энергетики Норвегии Терье Осланд объявил о запуске проекта Longship, нацеленного на создание центрального хранилища углекислого газа в Северном море. Этот амбициозный проект оценивается в $2,6 млрд и направлен на применение технологии CCS (углеродного захвата и хранения) для смягчения воздействия климатических изменений. Норвегия уже имеет опыт в области CCS благодаря успешным проектам Sleipner и Snohvit, и сейчас стремится увеличить объем углерода, запечатываемого под морским дном. План Longship предусматривает создание мощности по захвату и хранению 1,5 млн. тонн углерода ежегодно в течение 25 лет. Несмотря на позитивные перспективы, существуют опасения по поводу долгосрочных последствий такого хранения. Однако сторонники проекта утверждают, что морское хранение углерода имеет ряд преимуществ, включая минимальное воздействие на окружающую среду. Проект Longship осуществляется при участии компаний Equinor, Shell и TotalEnergies через совместное предприятие Northern Li ...>>

Выращены мини-органы из амниотической жидкости человека 15.03.2024

Международная команда ученых под руководством профессора Фань Сюлиня из Университета Чжэцзян разработала уникальный способ выращивания мини-органов из клеток, обнаруженных в амниотической жидкости человека. Этот значительный прорыв в медицине может привести к улучшению диагностики и лечения врожденных заболеваний. Органоиды, представляющие собой трехмерные клеточные структуры, имитирующие органы в меньшем масштабе, были выращены из клеток легких, почек и тонкого кишечника, найденных в амниотической жидкости. Этот метод открывает новые возможности для изучения различных состояний плода и может стать ключом к ранней диагностике и лечению врожденных дефектов. Хотя пока не проводились попытки использования этого метода в лечении, ученые надеются, что их исследования в будущем помогут бороться с серьезными врожденными заболеваниями, которые затрагивают миллионы новорожденных ежегодно. Этот прорыв может изменить практику медицинских вмешательств, позволяя диагностировать и лечить врожд ...>>

Случайная новость из Архива

Мозг людей работает по-разному 18.10.2015

Взаимосвязи между областями человеческого мозга сродни отпечаткам пальцев - с их помощью можно отличить одного человека от другого, но при том они остаются постоянными, какой бы умственной работой мы ни занимались.

Мы все думаем и чувствуем по-разному: кто-то быстрее решает математические задачи, но с трудом запоминает стихи, кто-то рыдает даже на самых скверных мелодрамах, кто-то прекрасно рисует и при этом совсем равнодушен к музыке. Эмоциональные и когнитивно-психологические отличия говорят о том, что у одного человека мозги в буквальном смысле работают иначе, чем у другого. Но насколько разница в нейробиологических характеристиках отражает нашу индивидуальность? Можно ли только по работе мозга отличить одного индивидуума от другого?

В своем исследовании Эмили Финн (Emily S Finn) и ее коллеги из Йельского университета воспользовались данными проекта Коннектом Человека, целью которого является полное описание структуры связей в нервной системе организма. Учитывая, что в нейрональных связях человеческого мозга участвуют около 100 млрд нейронов, становится понятно, насколько это амбициозная и трудоемкая задача. Речь идет не только о "прорисовке" межнейронных соединений, но и о точном описании архитектуры разнообразных блоков и модулей мозга, отличающихся как анатомически, так и функционально. Естественно, что здесь активно используются методы функциональной магнитно-резонансной томографии (фМРТ), которая позволяет увидеть активность того или иного участка мозга в момент выполнения какой-то задачи. Для своих целей нейробиологи из Йеля взяли данные, описывавшие работу 268 мозговых областей у 126 людей, и построили корреляционную матрицу активности, в которой активность каждого из 268 участков сопоставлялась с работой всех прочих.

В статье в Nature Neuroscience авторы пишут, что рисунок взаимосвязанной активности мозговых зон был в достаточной степени индивидуален, то есть по нему можно было отличить одного человека от другого. Целью было не столько построить десяток-другой индивидуальных портретов, сколько понять, можно ли в функционально-анатомических параметрах мозга обнаружить индивидуальные черты. Метод работал прекрасно: например, после простого сканирования мозга в фМРТ-аппарате можно было с 99% точностью сказать, что вот этот мозговой "портрет" принадлежит одному человеку, а вот этот - другому. Если перед добровольцем ставили какую-то умственную задачу, точность различения падала до 70%, но все равно оставалась довольно высокой. И даже если два человека думали о разных вещах, все равно характер взаимосвязей между областями мозга сохранял индивидуальный отпечаток.

Одновременная активация мозговых зон указывает на то, что информационные каналы между ними срабатывают в первую очередь. То есть, когда мы говорим об индивидуальных функционально-анатомических параметрах, то имеем в виду индивидуальную настройку таких связей. При разных задачах в мозге срабатывают разные участки, но именно в характере обмена данными, в работе информационных "мостов" можно найти некие общие свойства, независимые от конкретной задачи, и при том свойственные именно данному человеку. То, что архитектура взаимосвязей обладает индивидуальными особенностями, известно уже относительно давно, однако на сей раз удалось показать, что такие черты можно различить даже при выполнении разных когнитивных заданий. Стоит подчеркнуть, что речь в данном случае идет не столько о физической структуре, не о том, что между одними участками нейронные "провода" положены гуще, а между другими - реже (хотя подобные различия, безусловно, имеют место), а что они используются с разной интенсивностью. То есть да, мозги работают по-разному, и это можно увидеть с помощью фМРТ.

Сильней всего индивидуальные черты проявлялись в работе лобно-теменной коры, где происходит фильтрация поступающей информации. Действительно, посмотрев в окно, кто-то увидит в первую очередь драку во дворе, а кто-то - птицу на дереве; и можно смело утверждать, что психологические различия между нами не в последнюю очередь обусловлены разностью в восприятии. Полученные результаты могут сильно пригодиться врачам-психиатрам и психоневрологам: психические болезни определяют преимущественно по симптоматике, однако одни и те же симптомы могут относиться к разным расстройствам, и наоборот, одна и та же болезнь у одного человека, бывает, проявляется иначе, чем у другого. И с личным "портретом" мозга на руках можно будет точнее сказать, что именно с больным не так.

Другие интересные новости:

▪ Смарт-часы Canyon CNS-SW71 для активного отдыха

▪ Гель, позволяющий приклеивать датчики к внутренним органам

▪ Тонометр работает от прикосновения

▪ Подводное фото станет четким

▪ Автомобильная фара на светодиодах

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Часы, таймеры, реле, коммутаторы нагрузки. Подборка статей

▪ статья Основные правила видеосъемки. Искусство видео

▪ статья Как отверстие в игле швейной машинки было перенесено на острый конец? Подробный ответ

▪ статья Формовщик колбасных изделий. Должностная инструкция

▪ статья Имитатор звучания пружин рабочего барабана плюс рабочий барабан переменного объема. Энциклопедия радиоэлектроники и электротехники

▪ статья Чудо-свисток. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024