Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Конструируем валкодер. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Узлы радиолюбительской техники

Комментарии к статье Комментарии к статье

Валкодер - устройство, меняющее какую-то величину в зависимости от поворота оси. Такая штука водится, например, в роликовой мыши или в музыкальном центре. Собственно, сам по себе валкодер довольно прост, но мы усложним задачу тем, что не будем использовать микроконтроллер, как это практикуется во всех промышленных образцах. Валкодер интересен тем, что в нем переплетаются очень многие приемы, применяемые в цифровой и аналоговой электронике. Итак ТЗ: разработать устройство, изменяющее выходное напряжение в диапазоне 0 - 3В, в линейной зависимости от угла поворота оси. Изменение напряжение должно быть реверсивным, с количеством градаций не менее 80. Выходной сигнал ложен быть изолирован он рабочих напряжений устройства (гальваническая развязка). Полное нарастание/спад напряжения происходит при изменении угла поворота оси от 0 до 1440 градусов (4 оборота). Устройство должно сохранять работоспособность в диапазоне питающего напряжения от 8 до 15В. Предусмотреть цифровую индикацию напряжения.

1. С чего начать?

Определим чего от нас хотят:

А. Во-первых "голова" устройства будет цифровой, т.к. будет считать импульсы, создаваемые вращающейся ручкой.
Б. Счет импульсов должен быть реверсивным, т.к. результирующая величина уменьшается и увеличивается в зависимости от направления вращения ручки.
В. Не менее 80 градаций выходного напряжения. Значит для установки напряжения нам потребуется не менее 8 бит двоичного кода (80[10] = 1010000 [2]). 80 градаций за 4 оборота, значит за оборот, ручка должна выдавать 20 импульсов. По одному импульсу через каждые 18 градусов.
Г. Для гальванической отвязки выходного напряжения, в преобразовательном каскаде (цифровой --> аналоговый) нужно будет использовать оптроны.
Д. При заявленном напряжении питания работают микросхемы серий К561 и 564.
Е. Цифровая индикация - простой узел, но потребуется еще 2 дешифратора в 7-и сегментный код.

2. Теперь попробуем описать алгоритм работы

- При включении на выходе 0.

- ЕСЛИ на выходе 0 И есть импульс с датчика И ручка поворачивается по часовой стрелке - добавить 1 в выходной код.

- ЕСЛИ на выходе 0 И есть импульс с датчика И ручка поворачивается против часовой стрелки- не выполнять никаких действий

- ЕСЛИ на выходе 1010000 И есть импульс с датчика И ручка поворачивается по часовой стрелке- не выполнять никаких действий

- ЕСЛИ на выходе 1010000 И есть импульс с датчика И ручка поворачивается против часовой стрелки- вычесть 1 из выходного кода

- ЕСЛИ на выходе число отличное от 0 и 1010000 И есть импульс с датчика И ручка поворачивается по часовой стрелке - добавить 1 в выходной код

- ЕСЛИ на выходе число отличное от 0 и 1010000 И есть импульс с датчика И ручка поворачивается против часовой стрелки - вычесть 1 из выходного кода.

- ЕСЛИ нет импульса с датчика - не выполнять никаких действий.

3. Составим блок-схему устройства

Очевидно, что механическая часть должна сообщать как о самом вращении, так и о его направлении. Значит датчик должен выдавать 2 сигнала. В результате получается, что устройство должно состоять из реверсивного счетчика, блока согласования-развязки и цифроаналогового преобразователя.

Конструируем валкодер. Блок схема устройства

Согласователь должен выводить сигнал о переполнении и запрещать счетчику складывать (если получен максимум) или вычитать (если получен минимум).

4. Конструируем датчик

Воды вылито достаточно, теперь можно говорить более предметно. Механика зависит от электроники, а электроника от механики, поэтому рассмотрим датчик как единое целое. Вполне понятно, что использовать оптический датчик гораздо удобнее, нежели контактный, значит мы пришли к перфорированному колесу. Получить импульсы проще простого, осталось определить направление вращения. Есть два пути: использовать две оптопары (излучатель + приемник) расположив их таким образом, что освещается сначала один приемник, а затем второй. Либо использовать заслонку, скользящую на той же оси, что и колесо (момент, создаваемый осью, должен превышать массу заслонки и она не должна поворачиваться под собственной тяжестью).

Эта заслонка поворачивается синхронно с колесом на определенный угол (не более 4,5 градусов в обе стороны) и открывает/заслоняет дополнительный (стробирующий) фотоприемник. Этот вариант сильно усложняет механику, хотя весьма прост в схемотехнической реализации (логическая схема "И"), поэтому вернемся к первому варианту. Теперь прикинем временные эпюры сигналов, создаваемых датчиком.

Конструируем валкодер. Временая диаграмма

Как видно из рисунка, сигналы приемников смещены по фазе на 90 градусов. Этого легко добиться расположив приемники рядом в одну линию. Таким образом, когда отверстие проходит над приемниками, сначала освещается первый приемник, затем оба, затем второй.

Конструируем валкодер. Датчик 

Предположим, колесо (3) вращается по часовой стрелке вокруг оси (2). Когда отверстие (1) подходит к оптопарам, Сначала освещается правый приемник (5), затем оба, затем только левый (4). И это повторяется 20 раз за один оборот. Из приведенных эпюр видно, что на заднем фронте импульса с правого приемника формируется некий стробирующий сигнал. На нем мы и будем строить результирующий сигнал датчика: во-первых, он генерируется в единственном экземпляре при освещении приемников, во-вторых, он прекрасно характеризует направление вращения.

Совпадая с импульсом левого датчика при вращении по часовой стрелке, он дает возможность выделить положительный импульс при помощи логического элемента "И". Для получения этого чудо-импульса нам понадобится одновибратор для получения нужной длительности. Исходный фронт отрицательный, поэтому его нужно инвертировать. Попробуем набросать схему: петля ООС одновибратора рассчитывается исходя из максимальной частоты вращения колеса - длительность стробирующего импульса не должна превышать 1/4 периода "правого" сигнала. Цепочка С1R4 рассчитывается исходя из того, что формируемый ею импульс должен составлять 0,1Тстр.

Конструируем валкодер

5. Построим самый простой блок в устройстве - счетчик

Хотел нарисовать схему на триггерах, но это показалось мне совсем уж чудовищным глумлением над электроникой. Если интересно, схему реверсивного счетчика на триггерах можно найти в любом справочнике по цифровым микросхемам. Поэтому наша задача сводится к выбору стандартного счетчика из традиционных серий КМОП. Итак, определим требования к счетчику:

- Напряжение питания 8-15В

- Реверс

Таким условиям удовлетворяет К561ИЕ14

Конструируем валкодер. К561ИЕ14

Как видно на картинке, у счетчика есть входы предустановки. При помощи этих входов мы можем быстро выставлять на выходе необходимое напряжение, вызывая из внешнего ОЗУ соответствующий код. Разумеется в ОЗУ должен быть создан некий банк сохраненных уровней. В ТЗ не оговорена такая возможность, поэтому используем входы предустановки для сброса. Так же есть вход запрещения счета (РО). Но использовать его для защиты валкодера от переполнения не получится. Дело в том, что этот вход вовсе блокирует считчик и не дает ему считать даже в свободном направлении, а нам нужно, чтобы при достижении критического уровня в одном направлении, свободное направление оставалось свободным. Поэтому сигнал переполнения мы выделим после дешифратора. Этим сигналом мы будем стробировать вход "С".

Конструируем валкодер

6. Теперь можно заняться сравнительно простыми, но громоздкими узлами - дешифратором и цифро-аналоговым преобразователем (ЦАП)

Вот таким, например, у меня получился дешифратор. Ничего хитрого: массовые дешифраторы и транзисторные ключи для управления оптронами и полупроводниковыми индикаторами СИД-ОА. Дешифраторы вполне традиционные: К561ИД1 - преобразователь двоичного кода в десятичный и К561ИД4 - преобразователь двоичного кода в семисегментный.

Конструируем валкодер

ЦАП будет построен подобным образом. Единственный тонкий момент - определение диапазонов. Сопоставление границ регулировки десяткам и единицам. У нас 7 десятков и 10 единиц. Разделим полное выходное напряжение на 80 градаций: получается 0,04. Умножим на 10 - получается 0,4. Значит, единичный разряд регулирует напряжение в пределах 400мВ. Следовательно, оставшиеся 2,6В управляются десятками. Теперь осталось только подобрать резисторы, переключаемые оптронными ключами и, с их помощью, выстроить нужную шкалу регулировки.

Конструируем валкодер

Вот такое получилось.

Автор: Павел А. Улитин (Soundoverlord); Публикация: cxem.net

Смотрите другие статьи раздела Узлы радиолюбительской техники.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Использование Apple Vision Pro во время операций 16.03.2024

Медицинская команда больницы Кромвеля в Лондоне впервые применила Apple Vision Pro в ходе двух операций на позвоночнике. Это событие подтверждает потенциал гарнитуры в качестве медицинского инструмента, изменяющего подход к хирургической практике. Хотя сами врачи не использовали Vision Pro, операционная медсестра работала с виртуальной реальностью, используя очки во время подготовки и выполнения процедур. Гарнитура позволила просматривать виртуальные экраны в операционной, выбирать инструменты и следить за ходом операции. Программное обеспечение, разработанное компанией eXeX, специализирующейся на создании приложений на основе искусственного интеллекта для хирургии, существенно улучшило процесс оказания медицинской помощи пациентам. Использование Apple Vision Pro открывает новые возможности для разработки приложений в сфере здравоохранения, таких как клиническое образование, планирование операций, обучение и медицинская визуализация. Внедрение Apple Vision Pro в медицинскую пр ...>>

Хранение углерода в Северное море 16.03.2024

Министр энергетики Норвегии Терье Осланд объявил о запуске проекта Longship, нацеленного на создание центрального хранилища углекислого газа в Северном море. Этот амбициозный проект оценивается в $2,6 млрд и направлен на применение технологии CCS (углеродного захвата и хранения) для смягчения воздействия климатических изменений. Норвегия уже имеет опыт в области CCS благодаря успешным проектам Sleipner и Snohvit, и сейчас стремится увеличить объем углерода, запечатываемого под морским дном. План Longship предусматривает создание мощности по захвату и хранению 1,5 млн. тонн углерода ежегодно в течение 25 лет. Несмотря на позитивные перспективы, существуют опасения по поводу долгосрочных последствий такого хранения. Однако сторонники проекта утверждают, что морское хранение углерода имеет ряд преимуществ, включая минимальное воздействие на окружающую среду. Проект Longship осуществляется при участии компаний Equinor, Shell и TotalEnergies через совместное предприятие Northern Li ...>>

Выращены мини-органы из амниотической жидкости человека 15.03.2024

Международная команда ученых под руководством профессора Фань Сюлиня из Университета Чжэцзян разработала уникальный способ выращивания мини-органов из клеток, обнаруженных в амниотической жидкости человека. Этот значительный прорыв в медицине может привести к улучшению диагностики и лечения врожденных заболеваний. Органоиды, представляющие собой трехмерные клеточные структуры, имитирующие органы в меньшем масштабе, были выращены из клеток легких, почек и тонкого кишечника, найденных в амниотической жидкости. Этот метод открывает новые возможности для изучения различных состояний плода и может стать ключом к ранней диагностике и лечению врожденных дефектов. Хотя пока не проводились попытки использования этого метода в лечении, ученые надеются, что их исследования в будущем помогут бороться с серьезными врожденными заболеваниями, которые затрагивают миллионы новорожденных ежегодно. Этот прорыв может изменить практику медицинских вмешательств, позволяя диагностировать и лечить врожд ...>>

Случайная новость из Архива

Мозги животных объединили в сеть 27.07.2015

Ученые из Университета Дьюка (США) объединили мозги нескольких обезьян в настоящий живой компьютер, способный выполнять конкретные задачи.

Нейрофизиологи работали над интерфейсами бионических протезов, которые позволяют животным и человеку управлять движением конечностей силой мысли. Для этого мозги трех обезьян подключили к компьютеру, на экране которого в реальном времени отображались движения роботизированной руки.

Синхронизировав мысли, обезьяны смогли заставить конечность дотянуться до цели и получить за это награду. Затем ученые усложнили задачу приматам: каждое животное могло управлять движениями манипулятора только в одном измерении.

Обезьяны вновь сумели объединить усилия и решить эту задачу, создав сложную структуру, которую ученые назвали "мозгосетью" (Brainet). Тогда нейрофизиологи в ходе дальнейших экспериментов решили попробовать подключить мозги не только к компьютеру, но и друг к другу.

В участки коры головного мозга четырех крыс, отвечающие за контроль над движениями, были имплантированы две пары электродов для нейростимуляции и записи активности мозга. Затем ученые начали отправлять электрические импульсы и награждать животных за успешную синхронизацию деятельности мозга.

После десяти "тренировочных" сеансов крысы научились успешно выполнять задания в 61% случаев. Ученые считают, что мозг способен синхронизироваться с другим мозгом сигналами, словно компьютер.

Если схожим образом получится соединить мозги нескольких людей, то есть шанс, что они научатся обмениваться друг с другом мыслями без помощи речи. Пока нейрофизиологи надеются использовать "мозгосеть" для более эффективного использования бионических протезов.

Другие интересные новости:

▪ На Северном полюсе зафиксировали аномально высокую температуру

▪ Пожарный мотоцикл

▪ Продолжительность суток на Венере постоянно разная

▪ Флэш-карта 64 Мбит DataFlash от ATMEL

▪ Обнаружены нейроны жажды

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Истории из жизни радиолюбителей. Подборка статей

▪ статья Мотопланер класса F3B. Советы моделисту

▪ статья Почему в горах холоднее, чем в низинах, хотя они находятся ближе к солнцу? Подробный ответ

▪ статья Сваечный узел. Советы туристу

▪ статья Генераторы и формирователи импульсов. Энциклопедия радиоэлектроники и электротехники

▪ статья Индикатор разряда аккумуляторных батарей. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024