Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Принцип работы электронного счетчика. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Электрические счетчики

Комментарии к статье Комментарии к статье

Для расчета электрической энергии, потребляемой за определенный период времени, необходимо интегрировать во времени мгновенные значения активной мощности. Для синусоидального сигнала мощность равна произведению напряжения на ток в сети в данный момент времени. На этом принципе работает любой счетчик электрической энергии. На рис. 1 показана блок-схема электромеханического счетчика.

Принцип работы электронного счетчика. Блок- схема электромеханического счетчика
Рис. 1. Блок-схема электромеханического счетчика электрической энергии

Реализация цифрового счетчика электрической энергии (рис. 2) требует специализированных ИС, способных производить перемножение сигналов и предоставлять полученную величину в удобной для микроконтроллера форме. Например, преобразователь активной мощности - в частоту следования импульсов. Общее количество пришедших импульсов, подсчитываемое микроконтроллером, прямо пропорционально потребляемой электроэнергии.

Принцип работы электронного счетчика. Блок- схема цифрового счетчика электрической энергии
Рис. 2. Блок-схема цифрового счетчика электрической энергии

Не менее важную роль играют всевозможные сервисные функции, такие как дистанционный доступ к счетчику, к информации о накопленной энергии и многие другие. Наличие цифрового дисплея, управляемого от микроконтроллера, позволяет программно устанавливать различные режимы вывода информации, например, выводить на дисплей информацию о потребленной энергии за каждый месяц, по различным тарифам и так далее.

Для выполнения некоторых нестандартных функций, например, согласования уровней, используются дополнительные ис. Сейчас начали выпускать специализированные ИС - преобразователи мощности в частоту - и специализированные микроконтроллеры, содержащие подобные преобразователи на кристалле. Но, зачастую, они слишком дороги для использования в коммунально-бытовых индукционных счетчиках. Поэтому многие мировые производители микроконтроллеров разрабатывают специализированные микросхемы, предназначенные для такого применения.

Перейдем к анализу построения простейшего варианта цифрового счетчика на наиболее дешевом (менее доллара) 8-разрядном микроконтроллере Motorola. В представленном решении реализованы все минимально необходимые функции. Оно базируется на использовании недорогой ИС преобразователя мощности в частоту импульсов КР1095ПП1 и 8-разрядного микроконтроллера MC68HC05KJ1 (рис. 3). При такой структуре микроконтроллеру требуется суммировать число импульсов, выводить информацию на дисплей и осуществлять ее защиту в различных аварийных режимах. Рассматриваемый счетчик фактически представляет собой цифровой функциональный аналог существующих механических счетчиков, приспособленный к дальнейшему усовершенствованию.

Принцип работы электронного счетчика. Основные узлы простейшего цифрового счетчика электроэнергии
Рис. 3. Основные узлы простейшего цифрового счетчика электроэнергии

Сигналы, пропорциональные напряжению и току в сети, снимаются с датчиков и поступают на вход преобразователя. ИС преобразователя перемножает входные сигналы, получая мгновенную потребляемую мощность. Этот сигнал поступает на вход микроконтроллера, преобразующего его в Вт·ч и, по мере накопления сигналов, изменяющего показания счетчика. Частые сбои напряжения питания приводят к необходимости использования EEPROM для сохранения показаний счетчика. Поскольку сбои по питанию являются наиболее характерной аварийной ситуацией, такая защита необходима в любом цифровом счетчике.

Алгоритм работы программы (рис. 4) для простейшего варианта такого счетчика довольно прост. При включении питания микроконтроллер конфигурируется в соответствии с программой, считывает из EEPROM последнее сохраненное значение и выводит его на дисплей. Затем контроллер переходит в режим подсчета импульсов, поступающих от ИС преобразователя, и, по мере накопления каждого Вт·ч, увеличивает показания счетчика.

Принцип работы электронного счетчика. Алгоритм работы программы электросчетчика
Рис. 4. Алгоритм работы программы

При записи в EEPROM значение накопленной энергии может быть утеряно в момент отключения напряжения. По этим причинам значение накопленной энергии записывается в EEPROM циклически друг за другом через определенное число изменений показаний счетчика, заданное программно, в зависимости от требуемой точности. Это позволяет избежать потери данных о накопленной энергии. При появлении напряжения микроконтроллер анализирует все значения в EEPROM и выбирает последнее. Для минимальных потерь достаточно записывать значения с шагом 100 Вт·ч. Эту величину можно менять в программе.

Схема цифрового вычислителя показана на рис. 5. К разъему X1 подключается напряжение питания 220 В и нагрузка. С датчиков тока и напряжения сигналы поступают на микросхему преобразователя КР1095ПП1 с оптронной развязкой частотного выхода. Основу счетчика составляет микроконтроллер MC68HC05KJ1 фирмы Motorola, выпускаемый в 16-выводном корпусе (DIP или SOIC) и имеющий 1,2 Кбайт ПЗУ и 64 байт ОЗУ. Для хранения накопленного количества энергии при сбоях по питанию используется EEPROM малого объема 24С00 (16 байт) фирмы Microchip. В качестве дисплея используется 8-разрядный 7-сегментный ЖКИ, управляемый любым недорогим контроллером, обменивающийся с центральным микроконтроллером по протоколу SPI или I2C и подключаемый к разъему Х2.

Реализация алгоритма потребовала менее 1 Кбайт памяти и менее половины портов ввода/вывода микроконтроллера MC68HC05KJ1. Его возможностей достаточно, чтобы добавить некоторые сервисные функции, например, объединение счетчиков в сеть по интерфейсу RS-485. Эта функция позволит получать информацию о накопленной энергии в сервисном центре и отключать электричество в случае отсутствия оплаты. Сетью из таких счетчиков можно оборудовать жилой многоэтажный дом. Все показания по сети будут поступать в диспетчерский центр.

Определенный интерес представляет собой семейство 8-разрядных микроконтроллеров с расположенной на кристалле FLASH-памятью. Поскольку его можно программировать непосредственно на собранной плате, обеспечивается защищенность программного кода и возможность обновления ПО без монтажных работ.

Принцип работы электронного счетчика. Цифровой вычислитель для цифрового счетчика электроэнергии
Рис. 5. Цифровой вычислитель для цифрового счетчика электроэнергии

Еще более интересен вариант счетчика электроэнергии без внешней EEPROM и дорогостоящей внешней энергонезависимой ОЗУ. В нем можно при аварийных ситуациях фиксировать показания и служебную информацию во внутреннюю FLASH-память микроконтроллера. Это к тому же обеспечивает конфиденциальность информации, чего нельзя сделать при использовании внешнего кристалла, не защищенного от несанкционированного доступа. Такие счетчики электроэнергии любой сложности можно реализовать с помощью микроконтроллеров фирмы Motorola семейства HC08 с FLASH-памятью, расположенной на кристалле.

Переход на цифровые автоматические системы учета и контроля электроэнергии - вопрос времени. Преимущества таких систем очевидны. Цена их будет постоянно падать. И даже на простейшем микроконтроллере такой цифровой счетчик электроэнергии имеет очевидные преимущества: надежность за счет полного отсутствия трущихся элементов; компактность; возможность изготовления корпуса с учетом интерьера современных жилых домов; увеличение периода поверок в несколько раз; ремонтопригодность и простота в обслуживании и эксплуатации. При небольших дополнительных аппаратных и программных затратах даже простейший цифровой счетчик может обладать рядом сервисных функций, отсутствующих у всех механических, например, реализация многотарифной оплаты за потребляемую энергию, возможность автоматизированного учета и контроля потребляемой электроэнергии.

Публикация: cxem.net

Смотрите другие статьи раздела Электрические счетчики.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Использование Apple Vision Pro во время операций 16.03.2024

Медицинская команда больницы Кромвеля в Лондоне впервые применила Apple Vision Pro в ходе двух операций на позвоночнике. Это событие подтверждает потенциал гарнитуры в качестве медицинского инструмента, изменяющего подход к хирургической практике. Хотя сами врачи не использовали Vision Pro, операционная медсестра работала с виртуальной реальностью, используя очки во время подготовки и выполнения процедур. Гарнитура позволила просматривать виртуальные экраны в операционной, выбирать инструменты и следить за ходом операции. Программное обеспечение, разработанное компанией eXeX, специализирующейся на создании приложений на основе искусственного интеллекта для хирургии, существенно улучшило процесс оказания медицинской помощи пациентам. Использование Apple Vision Pro открывает новые возможности для разработки приложений в сфере здравоохранения, таких как клиническое образование, планирование операций, обучение и медицинская визуализация. Внедрение Apple Vision Pro в медицинскую пр ...>>

Хранение углерода в Северное море 16.03.2024

Министр энергетики Норвегии Терье Осланд объявил о запуске проекта Longship, нацеленного на создание центрального хранилища углекислого газа в Северном море. Этот амбициозный проект оценивается в $2,6 млрд и направлен на применение технологии CCS (углеродного захвата и хранения) для смягчения воздействия климатических изменений. Норвегия уже имеет опыт в области CCS благодаря успешным проектам Sleipner и Snohvit, и сейчас стремится увеличить объем углерода, запечатываемого под морским дном. План Longship предусматривает создание мощности по захвату и хранению 1,5 млн. тонн углерода ежегодно в течение 25 лет. Несмотря на позитивные перспективы, существуют опасения по поводу долгосрочных последствий такого хранения. Однако сторонники проекта утверждают, что морское хранение углерода имеет ряд преимуществ, включая минимальное воздействие на окружающую среду. Проект Longship осуществляется при участии компаний Equinor, Shell и TotalEnergies через совместное предприятие Northern Li ...>>

Выращены мини-органы из амниотической жидкости человека 15.03.2024

Международная команда ученых под руководством профессора Фань Сюлиня из Университета Чжэцзян разработала уникальный способ выращивания мини-органов из клеток, обнаруженных в амниотической жидкости человека. Этот значительный прорыв в медицине может привести к улучшению диагностики и лечения врожденных заболеваний. Органоиды, представляющие собой трехмерные клеточные структуры, имитирующие органы в меньшем масштабе, были выращены из клеток легких, почек и тонкого кишечника, найденных в амниотической жидкости. Этот метод открывает новые возможности для изучения различных состояний плода и может стать ключом к ранней диагностике и лечению врожденных дефектов. Хотя пока не проводились попытки использования этого метода в лечении, ученые надеются, что их исследования в будущем помогут бороться с серьезными врожденными заболеваниями, которые затрагивают миллионы новорожденных ежегодно. Этот прорыв может изменить практику медицинских вмешательств, позволяя диагностировать и лечить врожд ...>>

Случайная новость из Архива

Домашнее тепло - почти даром 26.10.2004

Американские оборонщики всего за один день собрали двухэтажный коттедж, обогрев и охлаждение которого обойдется в 45 центов вдень.

Ученые из Окриджской национальной лаборатории Министерства энергетики США разработали проект дома с почти нулевым потреблением энергии и даже воплотили его на практике в виде двухэтажного коттеджа для одного из жителей Ленуар-Сити в штате Теннесси. В доме приняты все меры для того, чтобы защитить помещение от неконтролируемого тепло- и воздухообмена с окружающей средой, а также утилизировать бесплатную энергию вроде тепла Земли или излучения Солнца.

Первый этаж дома и фундамент построены из готовых бетонных блоков с теплоизоляцией, второй этаж - из теплоизолирующих панелей. Кроме того, крыша и стены покрашены "холодной" краской, которая отражает инфракрасные лучи, предохраняя дом от перегрева. Для отопления используется водяной нагреватель, построенный на принципе теплового насоса; в нем тепло от холодного объема переносится к более теплому за счет затраты энергии. При этом энергия, потраченная на перенос, в конечном счете тоже идет на обогрев.

Дополнительными источниками энергии служат геотермальное тепло, а также солнечная батарея, подключенная к городской электросети. Для воздухообмена в доме устроена регулируемая механическая вентиляция; она столь хорошо спроектирована, что качество воздуха соответствует таковому в деревянном доме. Когда все детали сделаны заранее, на монтаж дома уходит совсем мало времени: бетонный первый этаж возводится за шесть часов, второй, из панелей, - за пять, а крыша - за три часа.

Стоит такой дом сто тысяч долларов. На отопление и охлаждение хозяин потратит всего 45 центов в день, в то время как коттедж такого размера в этом городе требует от 4 до 5 долларов.

Другие интересные новости:

▪ Новые роботы-пылесосы Toshiba

▪ Капсула для возврата с Марса

▪ Дистанционный выключатель освещения

▪ О пользе пешего хождения

▪ Светодиоды недостаточно экологичны

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Радиоэлектроника и электротехника. Подборка статей

▪ статья Ом Георг. Биография ученого

▪ статья Как изначально выглядела шкала Цельсия? Подробный ответ

▪ статья Цианобактерии. Легенды, выращивание, способы применения

▪ статья Имитатор пения птиц. Энциклопедия радиоэлектроники и электротехники

▪ статья Сигнализатор разрядки аккумуляторных фонарей. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024